
Bioinformatics Toolbox™ 3
User’s Guide

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Bioinformatics Toolbox™ User’s Guide

© COPYRIGHT 2003–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2003 Online only New for Version 1.0 (Release 13SP1+)
June 2004 Online only Revised for Version 1.1 (Release 14)
November 2004 Online only Revised for Version 2.0 (Release 14SP1+)
March 2005 Online only Revised for Version 2.0.1 (Release 14SP2)
May 2005 Online only Revised for Version 2.1 (Release 14SP2+)
September 2005 Online only Revised for Version 2.1.1 (Release 14SP3)
November 2005 Online only Revised for Version 2.2 (Release 14SP3+)
March 2006 Online only Revised for Version 2.2.1 (Release 2006a)
May 2006 Online only Revised for Version 2.3 (Release 2006a+)
September 2006 Online only Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
April 2007 Online only Revised for Version 2.6 (Release 2007a+)
September 2007 Online only Revised for Version 3.0 (Release 2007b)
March 2008 Online only Revised for Version 3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.2 (Release 2008b)
March 2009 Online only Revised for Version 3.3 (Release 2009a)
September 2009 Online only Revised for Version 3.4 (Release 2009b)
March 2010 Online only Revised for Version 3.5 (Release 2010a)
September 2010 Online only Revised for Version 3.6 (Release 2010b)
April 2011 Online only Revised for Version 3.7 (Release 2011a)

Contents

Getting Started

1
Product Overview . 1-2
Features . 1-2
Expected Users . 1-3

Installation . 1-5
Installing . 1-5
Required Software . 1-5
Optional Software . 1-6

Features and Functions . 1-8
Data Formats and Databases . 1-8
Sequence Alignments . 1-10
Sequence Utilities and Statistics . 1-10
Protein Property Analysis . 1-11
Phylogenetic Analysis . 1-12
Microarray Data Analysis . 1-12
Microarray Data Storage . 1-13
Mass Spectrometry Data Analysis . 1-14
Graph Theory Functions . 1-17
Graph Visualization . 1-18
Statistical Learning and Visualization 1-18
Prototyping and Development Environment 1-19
Data Visualization . 1-19
Algorithm Sharing and Application Deployment 1-20

Importing and Exploring Bioinformatic Data from
Microsoft® Excel . 1-21

Creating get Functions . 1-29
What Are get Functions? . 1-29
Creating the getpubmed Function . 1-30

v

Extracting Information from Large Multi-Entry Text
Files . 1-34
Overview . 1-34
What Files Can You Access? . 1-34
Before You Begin . 1-35
Creating a BioIndexedFile Object to Access Your Source
File . 1-36

Determining the Number of Entries Indexed By a
BioIndexedFile Object . 1-37

Retrieving Entries from Your Source File 1-37
Reading Entries from Your Source File 1-38

Sequence Analysis

2
Example: Sequence Statistics . 2-2
Overview of Example . 2-2
Determining Nucleotide Content . 2-2
Reading Sequence Information . 2-5
Determining Nucleotide Composition 2-6
Determining Codon Composition . 2-11
Open Reading Frames . 2-15
Amino Acid Conversion and Composition 2-18

Example: Sequence Alignment . 2-22
Overview of Example . 2-22
Finding a Model Organism to Study 2-22
Retrieving Sequence Information from a Public
Database . 2-24

Searching a Public Database for Related Genes 2-27
Locating Protein Coding Sequences 2-29
Comparing Amino Acid Sequences . 2-33

Sequence Tool . 2-42
Overview of the Sequence Tool . 2-42
Importing a Sequence . 2-42
Viewing Nucleotide Sequence Information 2-44
Searching for Words . 2-46
Exploring Open Reading Frames . 2-48
Viewing Amino Acid Sequence Statistics 2-51

vi Contents

Closing the Sequence Tool . 2-55
References . 2-55

Multiple Sequence Alignment Viewer 2-56
Overview of the Multiple Sequence Alignment Viewer . . . 2-56
Loading Sequence Data and Viewing the Phylogenetic
Tree . 2-56

Selecting a Subset of Data from the Phylogenetic Tree . . . 2-57
Aligning Multiple Sequences . 2-58
Adjusting Multiple Sequence Alignments Manually 2-59
Closing the Multiple Sequence Alignment Viewer 2-62

Storing and Managing Short-Read Sequence Data in
Objects . 2-63
Overview . 2-63
Representing Sequence and Quality Data in a BioRead
Object . 2-64

Representing Sequence, Quality, and Alignment/Mapping
Data in a BioMap Object . 2-66

Retrieving Information from a BioRead or BioMap
Object . 2-70

Setting Information in a BioRead or BioMap Object 2-72
Determining Coverage of a Reference Sequence 2-73
Constructing Sequence Alignments to a Reference
Sequence . 2-75

Filtering Read Sequences Using SAM Flags 2-76

Microarray Analysis

3
Storing and Managing Gene Expression Data in
Objects . 3-2

Representing Expression Data Values in DataMatrix
Objects . 3-5
Overview of DataMatrix Objects . 3-5
Constructing DataMatrix Objects . 3-6
Getting and Setting Properties of a DataMatrix Object . . . 3-7
Accessing Data in DataMatrix Objects 3-8

vii

Representing Expression Data Values in ExptData
Objects . 3-11
Overview of ExptData Objects . 3-11
Constructing ExptData Objects . 3-12
Using Properties of an ExptData Object 3-12
Using Methods of an ExptData Object 3-13
References . 3-14

Representing Sample and Feature Metadata in
MetaData Objects . 3-15
Overview of MetaData Objects . 3-15
Constructing MetaData Objects . 3-16
Using Properties of a MetaData Object 3-19
Using Methods of a MetaData Object 3-20

Representing Experiment Information in a MIAME
Object . 3-22
Overview of MIAME Objects . 3-22
Constructing MIAME Objects . 3-22
Using Properties of a MIAME Object 3-25
Using Methods of a MIAME Object 3-25

Representing All Data and Information in an
ExpressionSet Object . 3-27
Overview of ExpressionSet Objects 3-27
Constructing ExpressionSet Objects 3-29
Using Properties of an ExpressionSet Object 3-30
Using Methods of an ExpressionSet Object 3-30

Example: Visualizing Microarray Data 3-33
Overview of the Mouse Example . 3-33
Exploring the Microarray Data Set 3-34
Spatial Images of Microarray Data 3-36
Statistics of the Microarrays . 3-46
Scatter Plots of Microarray Data . 3-48

Example: Analyzing Gene Expression Profiles 3-57
Overview of the Yeast Example . 3-57
Exploring the Data Set . 3-57
Filtering Genes . 3-61
Clustering Genes . 3-64
Principal Component Analysis . 3-68

viii Contents

Phylogenetic Analysis

4
Overview of Phylogenetic Analysis 4-2

Example: Building a Phylogenetic Tree 4-3
Overview of the Primate Example . 4-3
Searching NCBI for Phylogenetic Data 4-5
Creating a Phylogenetic Tree for Five Species 4-6
Creating a Phylogenetic Tree for Twelve Species 4-9
Exploring the Phylogenetic Tree . 4-11

Phylogenetic Tree Tool Reference 4-16
Overview of the Phylogenetic Tree Tool 4-16
Opening the Phylogenetic Tree Tool 4-16
File Menu . 4-18
Tools Menu . 4-31
Window Menu . 4-40
Help Menu . 4-40

Examples

A
Introduction . A-2

Sequence Analysis . A-2

Microarray Analysis . A-2

Phylogenetic Analysis . A-2

Index

ix

x Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Installation” on page 1-5

• “Features and Functions” on page 1-8

• “Importing and Exploring Bioinformatic Data from Microsoft® Excel” on
page 1-21

• “Creating get Functions” on page 1-29

• “Extracting Information from Large Multi-Entry Text Files” on page 1-34

1 Getting Started

Product Overview

In this section...

“Features” on page 1-2

“Expected Users” on page 1-3

Features
The Bioinformatics Toolbox™ product extends the MATLAB® environment
to provide an integrated software environment for genome and proteome
analysis. Scientists and engineers can answer questions, solve problems,
prototype new algorithms, and build applications for drug discovery and
design, genetic engineering, and biological research. An introduction to these
features will help you to develop a conceptual model for working with the
toolbox and your biological data.

The Bioinformatics Toolbox product includes many functions to help you
with genome and proteome analysis. Most functions are implemented in the
MATLAB programming language, with the source available for you to view.
This open environment lets you explore and customize the existing toolbox
algorithms or develop your own.

You can use the basic bioinformatic functions provided with this toolbox
to create more complex algorithms and applications. These robust and
well-tested functions are the functions that you would otherwise have to
create yourself.

Toolbox features and functions fall within these categories:

• Data formats and databases — Connect to Web-accessible databases
containing genomic and proteomic data. Read and convert between
multiple data formats.

• Sequence analysis — Determine the statistical characteristics of a
sequence, align two sequences, and multiply align several sequences.
Model patterns in biological sequences using hidden Markov model (HMM)
profiles.

• Phylogenetic analysis— Create and manipulate phylogenetic tree data.

1-2

Product Overview

• Microarray data analysis— Read, normalize, and visualize microarray
data.

• Mass spectrometry data analysis — Analyze and enhance raw mass
spectrometry data.

• Statistical learning — Classify and identify features in data sets with
statistical learning tools.

• Programming interface — Use other bioinformatic software (BioPerl
and BioJava) within the MATLAB environment.

The field of bioinformatics is rapidly growing and will become increasingly
important as biology becomes a more analytical science. The toolbox provides
an open environment that you can customize for development and deployment
of the analytical tools you will need.

• Prototype and develop algorithms— Prototype new ideas in an open
and extensible environment. Develop algorithms using efficient string
processing and statistical functions, view the source code for existing
functions, and use the code as a template for customizing, improving,
or creating your own functions. See “Prototyping and Development
Environment” on page 1-19.

• Visualize data — Visualize sequences and alignments, gene expression
data, phylogenetic trees, mass spectrometry data, protein structure,
and relationships between data with interconnected graphs. See “Data
Visualization” on page 1-19.

• Share and deploy applications — Use an interactive GUI builder to
develop a custom graphical front end for your data analysis programs.
Create standalone applications that run separately from the MATLAB
environment. See “Algorithm Sharing and Application Deployment” on
page 1-20.

Expected Users
The Bioinformatics Toolbox product is intended for computational biologists
and research scientists who need to develop new algorithms or implement
published ones, visualize results, and create standalone applications.

• Industry/Professional— Increasingly, drug discovery methods are being
supported by engineering practice. This toolbox supports tool builders

1-3

1 Getting Started

who want to create applications for the biotechnology and pharmaceutical
industries.

• Education/Professor/Student— This toolbox is well suited for learning
and teaching genome and proteome analysis techniques. Educators
and students can concentrate on bioinformatic algorithms instead of
programming basic functions such as reading and writing to files.

While the toolbox includes many bioinformatic functions, it is not intended
to be a complete set of tools for scientists to analyze their biological data.
However, the MATLAB environment is ideal for rapidly designing and
prototyping the tools you need.

1-4

Installation

Installation

In this section...

“Installing” on page 1-5

“Required Software” on page 1-5

“Optional Software” on page 1-6

Installing
Install the Bioinformatics Toolbox software from a DVD or Web release
using the MathWorks® Installer. For more information, see the installation
documentation.

Required Software
The Bioinformatics Toolbox software requires the following MathWorks
products to be installed on your computer.

Required Software Description

MATLAB Provides a command-line interface and integrated
software environment for the Bioinformatics
Toolbox software.

Version 3.7 of the Bioinformatics Toolbox software
requires MATLAB Version 7.12 on the Release
2011a DVD.

Statistics Toolbox™ Provides basic statistics and probability functions
used by the functions of the Bioinformatics
Toolbox software.

Version 3.7 of the Bioinformatics Toolbox software
requires Statistics Toolbox Version 7.5 on the
Release 2011a DVD.

1-5

1 Getting Started

Optional Software
MATLAB and the Bioinformatics Toolbox software environment is open and
extensible. In this environment you can interactively explore ideas, prototype
new algorithms, and develop complete solutions to problems in bioinformatics.
MATLAB facilitates computation, visualization, prototyping, and deployment.

Using the Bioinformatics Toolbox software with other MATLAB toolboxes and
products will allow you to do advanced algorithm development and solve
multidisciplinary problems.

Optional Software Description

Parallel Computing
Toolbox™

Perform parallel bioinformatic computations on
multicore computers and computer clusters. For
an example of batch processing through parallel
computing, see the Batch Processing of Spectra
Using Distributed Computing demo.

Signal Processing
Toolbox™

Process signal data from bioanalytical
instrumentation. Examples include acquisition
of fluorescence data for DNA sequence analyzers,
fluorescence data for microarray scanners, and
mass spectrometric data from protein analyses.

Image Processing
Toolbox™

Create complex and custom image processing
algorithms for data from microarray scanners.

SimBiology® Model, simulate, and analyze biochemical systems.

Optimization
Toolbox™

Use nonlinear optimization to predict the
secondary structure of proteins and the structure
of other biological macromolecules.

Neural Network
Toolbox™

Use neural networks to solve problems where
algorithms are not available. For example, you
can train neural networks for pattern recognition
using large sets of sequence data.

Database Toolbox™ Create your own in-house databases for sequence
data with custom annotations.

1-6

Installation

Optional Software Description

MATLAB®

Compiler™
Create standalone applications from MATLAB
GUI applications, and create dynamic link
libraries from MATLAB functions to use with any
programming environment.

MATLAB® Builder™
NE

Create COM objects to use with any COM-based
programming environment.

MATLAB Builder JA Integrate MATLAB applications into your
organization’s Java™ programs by creating a Java
wrapper around the application.

MATLAB Builder EX Create Microsoft® Excel® add-in functions
from MATLAB functions to use with Excel®

spreadsheets.

Spreadsheet Link™
EX

Connect Microsoft Excel with the MATLAB
Workspace to exchange data and to use MATLAB
computational and visualization functions. For
more information, see “Importing and Exploring
Bioinformatic Data from Microsoft® Excel” on
page 1-21.

1-7

1 Getting Started

Features and Functions

In this section...

“Data Formats and Databases” on page 1-8

“Sequence Alignments” on page 1-10

“Sequence Utilities and Statistics” on page 1-10

“Protein Property Analysis” on page 1-11

“Phylogenetic Analysis” on page 1-12

“Microarray Data Analysis” on page 1-12

“Microarray Data Storage” on page 1-13

“Mass Spectrometry Data Analysis” on page 1-14

“Graph Theory Functions” on page 1-17

“Graph Visualization” on page 1-18

“Statistical Learning and Visualization” on page 1-18

“Prototyping and Development Environment” on page 1-19

“Data Visualization” on page 1-19

“Algorithm Sharing and Application Deployment” on page 1-20

Data Formats and Databases
The toolbox accesses many of the databases on the Web and other online data
sources. It allows you to copy data into the MATLAB Workspace, and read
and write to files with standard bioinformatic formats. It also reads many
common genome file formats, so that you do not have to write and maintain
your own file readers.

Web-based databases — You can directly access public databases on the
Web and copy sequence and gene expression information into the MATLAB
environment.

The sequence databases currently supported are GenBank® (getgenbank),
GenPept (getgenpept), European Molecular Biology Laboratory (EMBL)
(getembl), and Protein Data Bank (PDB) (getpdb). You can also access data

1-8

Features and Functions

from the NCBI Gene Expression Omnibus (GEO) Web site by using a single
function (getgeodata).

Get multiply aligned sequences (gethmmalignment), hidden Markov model
profiles (gethmmprof), and phylogenetic tree data (gethmmtree) from the
PFAM database.

Gene Ontology database — Load the database from the Web into
a gene ontology object (geneont.geneont). Select sections of the
ontology with methods for the geneont object (geneont.getancestors,
geneont.getdescendants, geneont.getmatrix, geneont.getrelatives),
and manipulate data with utility functions (goannotread, num2goid).

Read data from instruments — Read data generated from gene
sequencing instruments (scfread, joinseq, traceplot), mass spectrometers
(jcampread), and Agilent® microarray scanners (agferead).

Reading data formats — The toolbox provides a number of functions for
reading data from common bioinformatic file formats.

• Sequence data: GenBank (genbankread), GenPept (genpeptread), EMBL
(emblread), PDB (pdbread), and FASTA (fastaread)

• Multiply aligned sequences: ClustalW and GCG formats (multialignread)

• Gene expression data from microarrays: Gene Expression Omnibus (GEO)
data (geosoftread), GenePix® data in GPR and GAL files (gprread,
galread), SPOT data (sptread), Affymetrix® GeneChip® data (affyread),
and ImaGene® results files (imageneread)

• Hidden Markov model profiles: PFAM-HMM file (pfamhmmread)

Writing data formats — The functions for getting data from the Web
include the option to save the data to a file. However, there is a function to
write data to a file using the FASTA format (fastawrite).

BLAST searches — Request Web-based BLAST searches (blastncbi), get
the results from a search (getblast) and read results from a previously saved
BLAST formatted report file (blastread).

1-9

1 Getting Started

The MATLAB environment has built-in support for other industry-standard
file formats including Microsoft Excel and comma-separated-value (CSV) files.
Additional functions perform ASCII and low-level binary I/O, allowing you to
develop custom functions for working with any data format.

Sequence Alignments
You can select from a list of analysis methods to compare nucleotide or amino
acid sequences using pairwise or multiple sequence alignment functions.

Pairwise sequence alignment — Efficient implementations of standard
algorithms such as the Needleman-Wunsch (nwalign) and Smith-Waterman
(swalign) algorithms for pairwise sequence alignment. The toolbox also
includes standard scoring matrices such as the PAM and BLOSUM
families of matrices (blosum, dayhoff, gonnet, nuc44, pam). Visualize
sequence similarities with seqdotplot and sequence alignment results with
showalignment.

Multiple sequence alignment — Functions for multiple sequence
alignment (multialign, profalign) and functions that support multiple
sequences (multialignread, fastaread, showalignment). There is also a
graphical interface (multialignviewer) for viewing the results of a multiple
sequence alignment and manually making adjustment.

Multiple sequence profiles— Implementations for multiple alignment and
profile hidden Markov model algorithms (gethmmprof, gethmmalignment,
gethmmtree, pfamhmmread, hmmprofalign, hmmprofestimate,
hmmprofgenerate, hmmprofmerge, hmmprofstruct, showhmmprof).

Biological codes — Look up the letters or numeric equivalents for
commonly used biological codes (aminolookup, baselookup, geneticcode,
revgeneticcode).

Sequence Utilities and Statistics
You can manipulate and analyze your sequences to gain a deeper
understanding of the physical, chemical, and biological characteristics of
your data. Use a graphical user interface (GUI) with many of the sequence
functions in the toolbox (seqtool).

1-10

Features and Functions

Sequence conversion and manipulation— The toolbox provides routines
for common operations, such as converting DNA or RNA sequences to amino
acid sequences, that are basic to working with nucleic acid and protein
sequences (aa2int, aa2nt, dna2rna, rna2dna, int2aa, int2nt, nt2aa, nt2int,
seqcomplement, seqrcomplement, seqreverse).

You can manipulate your sequence by performing an in silico digestion with
restriction endonucleases (restrict) and proteases (cleave).

Sequence statistics — Determine various statistics about a sequence
(aacount, basecount, codoncount, dimercount, nmercount, ntdensity,
codonbias, cpgisland, oligoprop), search for specific patterns within a
sequence (seqshowwords, seqwordcount), or search for open reading frames
(seqshoworfs). In addition, you can create random sequences for test cases
(randseq).

Sequence utilities—Determine a consensus sequence from a set of multiply
aligned amino acid, nucleotide sequences (seqconsensus, or a sequence
profile (seqprofile). Format a sequence for display (seqdisp) or graphically
show a sequence alignment with frequency data (seqlogo).

Additional MATLAB functions efficiently handle string operations with
regular expressions (regexp, seq2regexp) to look for specific patterns in a
sequence and search through a library for string matches (seqmatch).

Look for possible cleavage sites in a DNA/RNA sequence by searching for
palindromes (palindromes).

Protein Property Analysis
You can use a collection of protein analysis methods to extract information
from your data. You can determine protein characteristics and simulate
enzyme cleavage reactions. The toolbox provides functions to calculate various
properties of a protein sequence, such as the atomic composition (atomiccomp),
molecular weight (molweight), and isoelectric point (isoelectric). You can
cleave a protein with an enzyme (cleave, rebasecuts) and create distance
and Ramachandran plots for PDB data (pdbdistplot, ramachandran). The
toolbox contains a graphical user interface for protein analysis (proteinplot)
and plotting 3-D protein and other molecular structures with information
from molecule model files, such as PDB files (molviewer).

1-11

1 Getting Started

Amino acid sequence utilities — Calculate amino acid statistics for a
sequence (aacount) and get information about character codes (aminolookup).

Phylogenetic Analysis
You can use functions for phylogenetic tree building and analysis. There is
also a GUI to draw phylograms (trees).

Phylogenetic tree data — Read and write Newick-formatted tree files
(phytreeread, phytreewrite) into the MATLAB Workspace as phylogenetic
tree objects (phytree).

Create a phylogenetic tree — Calculate the pairwise distance between
biological sequences (seqpdist), estimate the substitution rates (dnds,
dndsml), build a phylogenetic tree from pairwise distances (seqlinkage,
seqneighjoin, reroot), and view the tree in an interactive GUI that allows
you to view, edit, and explore the data (phytreetool or view). This GUI also
allows you to prune branches, reorder, rename, and explore distances.

Phylogenetic tree object methods — You can access the functionality
of the phytreetool GUI using methods for a phylogenetic tree object
(phytree). Get property values (get) and node names (getbyname). Calculate
the patristic distances between pairs of leaf nodes (pdist, weights)
and draw a phylogenetic tree object in a MATLAB Figure window as a
phylogram, cladogram, or radial treeplot (plot). Manipulate tree data by
selecting branches and leaves using a specified criterion (select, subtree)
and removing nodes (prune). Compare trees (getcanonical) and use
Newick-formatted strings (getnewickstr).

Microarray Data Analysis
The MATLAB environment is widely used for microarray data analysis,
including reading, filtering, normalizing, and visualizing microarray data.
However, the standard normalization and visualization tools that scientists
use can be difficult to implement. The toolbox includes these standard
functions:

Microarray data — Read Affymetrix GeneChip files (affyread) and plot
data (probesetplot), ImaGene results files (imageneread), SPOT files
(sptread) and Agilent microarray scanner files (agferead). Read GenePix

1-12

Features and Functions

GPR files (gprread) and GAL files (galread). Get Gene Expression Omnibus
(GEO) data from the Web (getgeodata) and read GEO data from files
(geosoftread).

A utility function (magetfield) extracts data from one of the microarray
reader functions (gprread, agferead, sptread, imageneread).

Microarray normalization and filtering — The toolbox provides a
number of methods for normalizing microarray data, such as lowess
normalization (malowess) and mean normalization (manorm), or across
multiple arrays (quantilenorm). You can use filtering functions to
clean raw data before analysis (geneentropyfilter, genelowvalfilter,
generangefilter, genevarfilter), and calculate the range and variance of
values (exprprofrange, exprprofvar).

Microarray visualization— The toolbox contains routines for visualizing
microarray data. These routines include spatial plots of microarray data
(maimage, redgreencmap), box plots (maboxplot), loglog plots (maloglog),
and intensity-ratio plots (mairplot). You can also view clustered expression
profiles (clustergram, redgreencmap). You can create 2-D scatter plots of
principal components from the microarray data (mapcaplot).

Microarray utility functions — Use the following functions to work
with Affymetrix GeneChip data sets. Get library information for a probe
(probelibraryinfo), gene information from a probe set (probesetlookup),
and probe set values from CEL and CDF information (probesetvalues).
Show probe set information from NetAffx™ Analysis Center (probesetlink)
and plot probe set values (probesetplot).

The toolbox accesses statistical routines to perform cluster analysis and
to visualize the results, and you can view your data through statistical
visualizations such as dendrograms, classification, and regression trees.

Microarray Data Storage
The toolbox includes functions, objects, and methods for creating, storing, and
accessing microarray data.

The object constructor function, DataMatrix, lets you create a DataMatrix
object to encapsulate data and metadata from a microarray experiment. A

1-13

1 Getting Started

DataMatrix object stores experimental data in a matrix, with rows typically
corresponding to gene names or probe identifiers, and columns typically
corresponding to sample identifiers. A DataMatrix object also stores
metadata, including the gene names or probe identifiers (as the row names)
and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the
same way you reference data in a MATLAB array, that is, by using linear or
logical indexing. Alternately, you can reference this experimental data by
gene (probe) identifiers and sample identifiers. Indexing by these identifiers
lets you quickly and conveniently access subsets of the data without having
to maintain additional index arrays.

Many MATLAB operators and arithmetic functions are available to
DataMatrix objects by means of methods. These methods let you modify,
combine, compare, analyze, plot, and access information from DataMatrix
objects. Additionally, you can easily extend the functionality by using
general element-wise functions, dmarrayfun and dmbsxfun, and by manually
accessing the properties of a DataMatrix object.

Note For more information on creating and using DataMatrix objects, see
“Representing Expression Data Values in DataMatrix Objects” on page 3-5.

Mass Spectrometry Data Analysis
The mass spectrometry functions preprocess and classify raw data from
SELDI-TOF and MALDI-TOF spectrometers and use statistical learning
functions to identify patterns.

Reading raw data — Load raw mass/charge and ion intensity data from
comma-separated-value (CSV) files, or read a JCAMP-DX-formatted file with
mass spectrometry data (jcampread) into the MATLAB environment.

You can also have data in TXT files and use the importdata function.

Preprocessing raw data — Resample high-resolution data to a lower
resolution (msresample) where the extra data points are not needed. Correct
the baseline (msbackadj). Align a spectrum to a set of reference masses

1-14

Features and Functions

(msalign) and visually verify the alignment (msheatmap). Normalize the
area between spectra for comparing (msnorm), and filter out noise (mslowess
and mssgolay).

Spectrum analysis— Load spectra into a GUI (msviewer) for selecting mass
peaks and further analysis.

The following graphic illustrates the roles of the various mass spectrometry
functions in the toolbox.

1-15

1 Getting Started

�������	
	
����
���������
��

������
����	������

������� ����������	�

��������	�

�
��	������

�
��	���

���

���������

�����	��

����������

�������
���
���

���

��		
����
��
������

��������

 ��
���
�

 ���	
���
��
���
�

1-16

Features and Functions

Graph Theory Functions
Graph theory functions in the toolbox apply basic graph theory algorithms to
sparse matrices. A sparse matrix represents a graph, any nonzero entries in
the matrix represent the edges of the graph, and the values of these entries
represent the associated weight (cost, distance, length, or capacity) of the
edge. Graph algorithms that use the weight information will cancel the edge
if a NaN or an Inf is found. Graph algorithms that do not use the weight
information will consider the edge if a NaN or an Inf is found, because these
algorithms look only at the connectivity described by the sparse matrix and
not at the values stored in the sparse matrix.

Sparse matrices can represent four types of graphs:

• Directed Graph — Sparse matrix, either double real or logical. Row
(column) index indicates the source (target) of the edge. Self-loops (values
in the diagonal) are allowed, although most of the algorithms ignore these
values.

• Undirected Graph — Lower triangle of a sparse matrix, either double
real or logical. An algorithm expecting an undirected graph ignores values
stored in the upper triangle of the sparse matrix and values in the diagonal.

• Direct Acyclic Graph (DAG) — Sparse matrix, double real or logical,
with zero values in the diagonal. While a zero-valued diagonal is a
requirement of a DAG, it does not guarantee a DAG. An algorithm expecting
a DAG will not test for cycles because this will add unwanted complexity.

• Spanning Tree — Undirected graph with no cycles and with one
connected component.

There are no attributes attached to the graphs; sparse matrices representing
all four types of graphs can be passed to any graph algorithm. All functions
will return an error on nonsquare sparse matrices.

Graph algorithms do not pretest for graph properties because such tests
can introduce a time penalty. For example, there is an efficient shortest
path algorithm for DAG, however testing if a graph is acyclic is expensive
compared to the algorithm. Therefore, it is important to select a graph theory
function and properties appropriate for the type of the graph represented by
your input matrix. If the algorithm receives a graph type that differs from
what it expects, it will either:

1-17

1 Getting Started

• Return an error when it reaches an inconsistency. For example, if you pass
a cyclic graph to the graphshortestpath function and specify Acyclic as
the method property.

• Produce an invalid result. For example, if you pass a directed graph to a
function with an algorithm that expects an undirected graph, it will ignore
values in the upper triangle of the sparse matrix.

The graph theory functions include graphallshortestpaths, graphconncomp,
graphisdag, graphisomorphism, graphisspantree, graphmaxflow,
graphminspantree, graphpred2path, graphshortestpath, graphtopoorder,
and graphtraverse.

Graph Visualization
The toolbox includes functions, objects, and methods for creating, viewing,
and manipulating graphs such as interactive maps, hierarchy plots, and
pathways. This allows you to view relationships between data.

The object constructor function (biograph) lets you create a biograph object to
hold graph data. Methods of the biograph object let you calculate the position
of nodes (dolayout), draw the graph (view), get handles to the nodes and
edges (getnodesbyid and getedgesbynodeid) to further query information,
and find relations between the nodes (getancestors, getdescendants,
and getrelatives). There are also methods that apply basic graph theory
algorithms to the biograph object.

Various properties of a biograph object let you programmatically change the
properties of the rendered graph. You can customize the node representation,
for example, drawing pie charts inside every node (CustomNodeDrawFcn). Or
you can associate your own callback functions to nodes and edges of the graph,
for example, opening a Web page with more information about the nodes
(NodeCallback and EdgeCallback).

Statistical Learning and Visualization
You can classify and identify features in data sets, set up cross-validation
experiments, and compare different classification methods.

1-18

Features and Functions

The toolbox provides functions that build on the classification and statistical
learning tools in the Statistics Toolbox software (classify, kmeans, and
treefit).

These functions include imputation tools (knnimpute), and K-nearest neighbor
classifiers (knnclassify).

Other functions include set up of cross-validation experiments (crossvalind)
and comparison of the performance of different classification methods
(classperf). In addition, there are tools for selecting diversity and
discriminating features (rankfeatures, randfeatures).

Prototyping and Development Environment
The MATLAB environment lets you prototype and develop algorithms and
easily compare alternatives.

• Integrated environment — Explore biological data in an environment
that integrates programming and visualization. Create reports and plots
with the built-in functions for mathematics, graphics, and statistics.

• Open environment — Access the source code for the toolbox functions.
The toolbox includes many of the basic bioinformatics functions you will
need to use, and it includes prototypes for some of the more advanced
functions. Modify these functions to create your own custom solutions.

• Interactive programming language — Test your ideas by typing
functions that are interpreted interactively with a language whose basic
data element is an array. The arrays do not require dimensioning and
allow you to solve many technical computing problems,

Using matrices for sequences or groups of sequences allows you to work
efficiently and not worry about writing loops or other programming controls.

• Programming tools— Use a visual debugger for algorithm development
and refinement and an algorithm performance profiler to accelerate
development.

Data Visualization
You can visually compare pairwise sequence alignments, multiply aligned
sequences, gene expression data from microarrays, and plot nucleic acid and

1-19

1 Getting Started

protein characteristics. The 2-D and volume visualization features let you
create custom graphical representations of multidimensional data sets. You
can also create montages and overlays, and export finished graphics to an
Adobe® PostScript® image file or copy directly into Microsoft® PowerPoint®.

Algorithm Sharing and Application Deployment
The open MATLAB environment lets you share your analysis solutions with
other users, and it includes tools to create custom software applications.
With the addition of MATLAB Compiler software, you can create standalone
applications independent of the MATLAB environment, and, with the addition
of MATLAB Builder NE software, you can create GUIs and standalone
applications within other programming environments.

• Share algorithms with other users — You can share data analysis
algorithms created in the MATLAB language across all supported
platforms by giving files to other users. You can also create GUIs within the
MATLAB environment using the Graphical User Interface Development
Environment (GUIDE).

• Deploy MATLAB GUIs — Create a GUI within the MATLAB
environment using GUIDE, and then use MATLAB Compiler software
to create a standalone GUI application that runs separately from the
MATLAB environment.

• Create dynamic link libraries (DLLs) — Use MATLAB Compiler
software to create DLLs for your functions, and then link these libraries to
other programming environments such as C and C++.

• Create COM objects — Use MATLAB Builder NE software to create
COM objects, and then use a COM-compatible programming environment
(Visual Basic®) to create a standalone application.

• Create Excel add-ins — Use MATLAB Builder EX software to
create Excel add-in functions, and then use these functions with Excel
spreadsheets.

• Create Java classes — Use MATLAB Builder JA software to
automatically generate Java classes from algorithms written in the
MATLAB programming language. You can run these classes outside the
MATLAB environment.

1-20

Importing and Exploring Bioinformatic Data from Microsoft® Excel®

Importing and Exploring Bioinformatic Data from
Microsoft Excel

If you have bioinformatic data in a Microsoft Excel spreadsheet, you can
use Spreadsheet Link EX software to connect Excel with the MATLAB
Workspace to exchange data and to use MATLAB and Bioinformatics Toolbox
computational and visualization functions.

Note The following example assumes you have Spreadsheet Link EX
software installed on your system.

The file used in the following example contains data from DeRisi, J.L., Iyer,
V.R., and Brown, P.O. (Oct. 24, 1997). Exploring the metabolic and genetic
control of gene expression on a genomic scale. Science 278(5338), 680–686.
PMID: 9381177. The data has been filtered using the steps described in the
Gene Expression Profile Analysis demo.

1 If you have not already done so, modify your system path to include the
MATLAB root directory as described in “Modifying Your System Path” in
the Spreadsheet Link EX documentation.

2 If you have not already done so, enable the Spreadsheet Link EX Add-In
as described in “Configuring the Spreadsheet Link EX Software” in the
Spreadsheet Link EX documentation.

3 Close MATLAB if you have it open.

4 Start Microsoft Excel. MATLAB and Spreadsheet Link EX software open
also.

5 From Excel, open the following file provided with the Bioinformatics
Toolbox software:

matlabroot\toolbox\bioinfo\biodemos\Filtered_Yeastdata.xls

1-21

1 Getting Started

Note The notation matlabroot is the MATLAB root directory, which is
the directory where the MATLAB software is installed on your system.

Note If the Security Warning appears, click Enable Macros.

6 After opening the provided file, if you receive a Microsoft® Visual Basic®

error, you may need to do one or both of the following:

• In the Excel software, enable macros. If you are running Excel 2003 or
earlier software, select Tools > Macro > Security. If you are running
Excel 2007 or 2010 software, select the Developer tab, then select
Macro Security from the Code group. (If the Developer tab is not
displayed on the Excel ribbon, consult Excel Help to display it.)

• Enable the Spreadsheet Link EX software as a Reference in the Microsoft
Visual Basic Editor, making sure to select the path you selected in step 2.

7 Note that cells J5, J6, J7, and J12 of the spreadsheet contain formulas
using Spreadsheet Link EX functions MLPutMatrix and MLEvalString.

Tip To view a cell’s formula, select the cell, then view the formula in the

formula bar at the top of the Excel window.

Cells J5, J6, and J7 each create a MATLAB variable from the data
in the spreadsheet, and cell J12 runs the Bioinformatics Toolbox
clustergram function using these three variables as input. For more
information on adding formulas using Spreadsheet Link EX functions, see
“Entering Functions into Worksheet Cells” in the Spreadsheet Link EX
documentation.

1-22

Importing and Exploring Bioinformatic Data from Microsoft® Excel®

����	�!"#�!$#����!%���
���&������	

'�
��	��
'������
��
��(�&��
��

������
��
'�����)*�)+�,����-��	.

�����!/0���
��	���&������

'�
��	�	�
'����1,���
����&��
��

�����
'��+���&����
��	�*���-�(�&��
��
���	
������.

�����!/%���
��	���&������

'�
��	�	���������&��
��#
���	
������#�����
����
��	����+�	���1��
��.

8 Note that cell J17 contains a formula using a macro function Clustergram,
which was created in the Visual Basic Editor. Running this macro does
the same as the formulas in cells J5, J6, J7, and J12. Optionally, view
the Clustergram macro function:

• If you are running Excel 2003 or earlier software, select Tools >Macro
> Visual Basic Editor

1-23

1 Getting Started

• If you are running Excel 2007 or 2010 software, select the Developer

tab, then select the Visual Basic button . (If the Developer tab is
not displayed on the Excel ribbon, consult Excel Help to display it.)

For more information on creating macros using Visual Basic Editor, see
“Examples: Using Spreadsheet Link EX Functions in Macros” in the
Spreadsheet Link EX documentation.

9 Run the formula in cell J17 to analyze and visualize the data:

a Select cell J17.

b Press F2.

c Press Enter.

The macro function Clustergram runs creating three MATLAB variables
(data, Genes, and TimeSteps) and displaying a Clustergram window
containing dendrograms and a heat map of the data.

1-24

Importing and Exploring Bioinformatic Data from Microsoft® Excel®

10 Edit the formulas in cells J5 and J6 to analyze a subset of the data. Do
this by editing the formulas’ cell ranges to include data for only the first
30 genes:

a Select cell J5, then press F2 to display the formula for editing. Change
H617 to H33, then press Enter.

b Select cell J6, then press F2 to display the formula for editing. Change
A617 to A33, then press Enter.

11 Run the formulas in cells J5, J6, J7, and J12 to analyze and visualize
a subset of the data.

a Select cell J5, press F2, then press Enter.

1-25

1 Getting Started

b Select cell J6, press F2, then press Enter.

c Select cell J7, press F2, then press Enter.

d Select cell J12, press F2, then press Enter.

12 If you are running Excel 2003 or earlier software, use the commands in the
Spreadsheet Link EX toolbar to interact with the data:

a Click-drag to select cells B5 through H7, click putmatrix in the toolbar,
type YAGenes for the variable name, then click OK. The variable
YAGenes is added to the MATLAB Workspace as a 3-by-7 matrix.

b Click evalstring in the toolbar, type plot(YAGenes) for the command,
then click OK. A Figure window displays a plot of the data.

1-26

Importing and Exploring Bioinformatic Data from Microsoft® Excel®

Note Make sure you use the ' (transpose) symbol when plotting the
data in this step. You need to transpose the data in YAGenes so that it
plots as three genes over seven time intervals.

c Select cell J20, then click getfigure in the toolbar. The figure is added
to the spreadsheet

13 If you are running Excel 2007 or 2010 software, use the MATLAB group on
the right side of the Home tab to interact with the data:

1-27

1 Getting Started

a Click-drag to select cells B5 through H7, then from the MATLAB
group, select Send data to MATLAB, type YAGenes for the variable
name, then click OK. The variable YAGenes is added to the MATLAB
Workspace as a 3-by-7 matrix.

b From the MATLAB group, select Run MATLAB command, type
plot(YAGenes) for the command, then click OK. A Figure window
displays a plot of the data.

Note Make sure you use the ' (transpose) symbol when plotting the
data in this step. You need to transpose the data in YAGenes so that it
plots as three genes over seven time intervals.

c Select cell J20, then from the MATLAB group, select Get MATLAB
figure. The figure is added to the spreadsheet

1-28

Creating get Functions

Creating get Functions

In this section...

“What Are get Functions?” on page 1-29

“Creating the getpubmed Function” on page 1-30

What Are get Functions?
Bioinformatics Toolbox includes several get functions that retrieve
information from various Web databases. Additionally, with some basic
MATLAB programming skills, you can create your own get function to
retrieve information from a specific Web database.

The following procedure illustrates how to create a function to retrieve
information from the NCBI PubMed database and read the information into
a MATLAB structure. The NCBI PubMed database contains biomedical
literature citations and abstracts.

1-29

1 Getting Started

Creating the getpubmed Function
The following procedure shows you how to create a function named getpubmed
using the MATLAB Editor. This function will retrieve citation and abstract
information from PubMed literature searches and write the data to a
MATLAB structure.

Specifically, this function will take one or more search terms, submit them
to the PubMed database for a search, then return a MATLAB structure or
structure array, with each structure containing information for an article
found by the search. The returned information will include a PubMed
identifier, publication date, title, abstract, authors, and citation.

The function will also include property name/property value pairs that let
the user of the function limit the search by publication date and limit the
number of records returned.

1 From MATLAB, open the MATLAB Editor by selecting File > New >
Function.

2 Define the getpubmed function, its input arguments, and return values by
typing:

function pmstruct = getpubmed(searchterm,varargin)
% GETPUBMED Search PubMed database & write results to MATLAB structure

3 Add code to do some basic error checking for the required input SEARCHTERM.

% Error checking for required input SEARCHTERM
if(nargin<1)

error('GETPUBMED:NotEnoughInputArguments',...
'SEARCHTERM is missing.');

end

4 Create variables for the two property name/property value pairs, and set
their default values.

% Set default settings for property name/value pairs,
% 'NUMBEROFRECORDS' and 'DATEOFPUBLICATION'
maxnum = 50; % NUMBEROFRECORDS default is 50
pubdate = ''; % DATEOFPUBLICATION default is an empty string

1-30

Creating get Functions

5 Add code to parse the two property name/property value pairs if provided
as input.

% Parsing the property name/value pairs
num_argin = numel(varargin);
for n = 1:2:num_argin

arg = varargin{n};
switch lower(arg)

% If NUMBEROFRECORDS is passed, set MAXNUM
case 'numberofrecords'

maxnum = varargin{n+1};

% If DATEOFPUBLICATION is passed, set PUBDATE
case 'dateofpublication'

pubdate = varargin{n+1};

end
end

6 You access the PubMed database through a search URL, which submits
a search term and options, and then returns the search results in a
specified format. This search URL is comprised of a base URL and defined
parameters. Create a variable containing the base URL of the PubMed
database on the NCBI Web site.

% Create base URL for PubMed db site
baseSearchURL = 'http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search';

7 Create variables to contain five defined parameters that the getpubmed
function will use, namely, db (database), term (search term), report (report
type, such as MEDLINE®), format (format type, such as text), and dispmax
(maximum number of records to display).

% Set db parameter to pubmed
dbOpt = '&db=pubmed';

% Set term parameter to SEARCHTERM and PUBDATE
% (Default PUBDATE is '')
termOpt = ['&term=',searchterm,'+AND+',pubdate];

1-31

1 Getting Started

% Set report parameter to medline
reportOpt = '&report=medline';

% Set format parameter to text
formatOpt = '&format=text';

% Set dispmax to MAXNUM
% (Default MAXNUM is 50)
maxOpt = ['&dispmax=',num2str(maxnum)];

8 Create a variable containing the search URL from the variables created
in the previous steps.

% Create search URL
searchURL = [baseSearchURL,dbOpt,termOpt,reportOpt,formatOpt,maxOpt];

9 Use the urlread function to submit the search URL, retrieve the search
results, and return the results (as text in the MEDLINE report type) in
medlineText, a character array.

medlineText = urlread(searchURL);

10 Use the MATLAB regexp function and regular expressions to parse and
extract the information in medlineText into hits, a cell array, where each
cell contains the MEDLINE-formatted text for one article. The first input
is the character array to search, the second input is a search expression,
which tells the regexp function to find all records that start with PMID-,
while the third input, 'match', tells the regexp function to return the
actual records, rather than the positions of the records.

hits = regexp(medlineText,'PMID-.*?(?=PMID|</pre>$)','match');

11 Instantiate the pmstruct structure returned by getpubmed to contain six
fields.

pmstruct = struct('PubMedID','','PublicationDate','','Title','',...
'Abstract','','Authors','','Citation','');

12 Use the MATLAB regexp function and regular expressions to loop through
each article in hits and extract the PubMed ID, publication date, title,

1-32

Creating get Functions

abstract, authors, and citation. Place this information in the pmstruct
structure array.

for n = 1:numel(hits)

pmstruct(n).PubMedID = regexp(hits{n},'(?<=PMID-).*?(?=\n)','match', 'once');

pmstruct(n).PublicationDate = regexp(hits{n},'(?<=DP -).*?(?=\n)','match', 'once');

pmstruct(n).Title = regexp(hits{n},'(?<=TI -).*?(?=PG -|AB -)','match', 'once');

pmstruct(n).Abstract = regexp(hits{n},'(?<=AB -).*?(?=AD -)','match', 'once');

pmstruct(n).Authors = regexp(hits{n},'(?<=AU -).*?(?=\n)','match');

pmstruct(n).Citation = regexp(hits{n},'(?<=SO -).*?(?=\n)','match', 'once');

end

13 Select File > Save As.

When you are done, your file should look similar to the getpubmed.m
file included with the Bioinformatics Toolbox software. The sample
getpubmed.m file, including help, is located at:

matlabroot\toolbox\bioinfo\biodemos\getpubmed.m

Note The notation matlabroot is the MATLAB root directory, which is
the directory where the MATLAB software is installed on your system.

1-33

1 Getting Started

Extracting Information from Large Multi-Entry Text Files

In this section...

“Overview” on page 1-34

“What Files Can You Access?” on page 1-34

“Before You Begin” on page 1-35

“Creating a BioIndexedFile Object to Access Your Source File” on page 1-36

“Determining the Number of Entries Indexed By a BioIndexedFile Object”
on page 1-37

“Retrieving Entries from Your Source File” on page 1-37

“Reading Entries from Your Source File” on page 1-38

Overview
Many biological experiments produce huge data files that are difficult to
access due to their size, which can cause memory issues when reading the file
into the MATLAB Workspace. You can construct a BioIndexedFile object
to access the contents of a large text file (up to 4 GB) containing nonuniform
size entries, such as sequences, annotations, and cross-references to data sets.
The BioIndexedFile object lets you quickly and efficiently access this data
without loading the source file into memory.

You can use the BioIndexedFile object to access individual entries or a
subset of entries when the source file is too big to fit into memory. You can
access entries using indices or keys. You can read and parse one or more
entries using provided interpreters or a custom interpreter function.

Use the BioIndexedFile object in conjunction with your large source file to:

• Access a subset of the entries for validation or further analysis.

• Parse entries using a custom interpreter function.

What Files Can You Access?
You can use the BioIndexedFile object to access large text files up to 4 GB
in size.

1-34

Extracting Information from Large Multi-Entry Text Files

Your source file can have these application-specific formats:

• FASTA

• FASTQ

• SAM

Your source file can also have these general formats:

• Table — Tab-delimited table with multiple columns. Keys can be in any
column. Rows with the same key are considered separate entries.

• Multi-row Table — Tab-delimited table with multiple columns. Keys
can be in any column. Contiguous rows with the same key are considered
a single entry. Noncontiguous rows with the same key are considered
separate entries.

• Flat— Flat file with concatenated entries separated by a character string,
typically //. Within an entry, the key is separated from the rest of the
entry by a white space.

Before You Begin
Before constructing a BioIndexedFile object, locate your source file on your
hard drive or a local network.

When you construct a BioIndexedFile object from your source file for the
first time, you also create an auxiliary index file, which by default is saved
to the same location as your source file. However, if your source file is in a
read-only location, you can specify a different location to save the index file.

Tip If you construct a BioIndexedFile object from your source file on
subsequent occasions, it takes advantage of the existing index file, which
saves time. However, the index file must be in the same location or a location
specified by the subsequent construction syntax.

1-35

1 Getting Started

Tip If insufficient memory is not an issue when accessing your source file,
you may want to try an appropriate read function, such as genbankread, for
importing data from GenBank files. For a complete list of read functions
in the Bioinformatics Toolbox, see “Data Formats and Databases” in the
Bioinformatics Toolbox Reference.

Additionally, several read functions such as fastaread, fastqread, samread,
and sffread include a Blockread property, which lets you read a subset of
entries from a file, thus saving memory.

Creating a BioIndexedFile Object to Access Your
Source File
To construct a BioIndexedFile object from a multi-row table file:

1 Create a variable containing the full absolute path of your source file. For
your source file, use the yeastgenes.sgd file, which is included with the
Bioinformatics Toolbox software.

sourcefile = which('yeastgenes.sgd');

2 Use the BioIndexedFile constructor function to construct a
BioIndexedFile object from the yeastgenes.sgd source file, which is a
multi-row table file. Save the index file in the Current Folder. Indicate that
the source file keys are in column 3. Also, indicate that the header lines in
the source file are prefaced with !, so the constructor ignores them.

gene2goObj = BioIndexedFile('mrtab', sourcefile, '.', ...
'KeyColumn', 3, 'HeaderPrefix','!')

The BioIndexedFile constructor function constructs gene2goObj, a
BioIndexedFile object, and also creates an index file with the same name
as the source file, but with an IDX extension. It stores this index file in the
Current Folder because we specified this location. However, the default
location for the index file is the same location as the source file.

1-36

Extracting Information from Large Multi-Entry Text Files

Caution Do not modify the index file. If you modify it, you can get invalid
results. Also, the constructor function cannot use a modified index file to
construct future objects from the associated source file.

Determining the Number of Entries Indexed By a
BioIndexedFile Object
To determine the number of entries indexed by a BioIndexedFile object, use
the NumEntries property of the BioIndexedFile object. For example, for
the gene2goObj object:

gene2goObj.NumEntries

ans =

6476

Note For a list and description of all properties of a BioIndexedFile object,
see BioIndexedFile class.

Retrieving Entries from Your Source File
Retrieve entries from your source file using either:

• The index of the entry

• The entry key

Retrieving Entries Using Indices
Use the getEntryByIndex method to retrieve a subset of entries from your
source file that correspond to specified indices. For example, retrieve the first
12 entries from the yeastgenes.sgd source file:

subset_entries = getEntryByIndex(gene2goObj, [1:12]);

1-37

1 Getting Started

Retrieving Entries Using Keys
Use the getEntryByKey method to retrieve a subset of entries from your
source file that are associated with specified keys. For example, retrieve all
entries with keys of AAC1 and AAD10 from the yeastgenes.sgd source file:

subset_entries = getEntryByKey(gene2goObj, {'AAC1' 'AAD10'});

The output subset_entries is a single string of concatenated entries.
Because the keys in the yeastgenes.sgd source file are not unique, this
method returns all entries that have a key of AAC1 or AAD10.

Reading Entries from Your Source File
The BioIndexedFile object includes a read method, which you can use to
read and parse a subset of entries from your source file. The read method
parses the entries using an interpreter function specified by the Interpreter
property of the BioIndexedFile object.

Setting the Interpreter Property
Before using the read method, make sure the Interpreter property of the
BioIndexedFile object is set appropriately.

If you constructed a
BioIndexedFile object from
...

The Interpreter property ...

A source file with an
application-specific format
(FASTA, FASTQ, or SAM)

By default is a handle to a function
appropriate for that file type and
typically does not require you to change
it.

A source file with a table,
multi-row table, or flat format

By default is [], which means the
interpreter is an anonymous function
in which the output is equivalent to the
input. You can change this to a handle
to a function that accepts a single string
of one or more concatenated entries
and returns a structure or an array of
structures containing the interpreted
data.

1-38

Extracting Information from Large Multi-Entry Text Files

There are two ways to set the Interpreter property of the BioIndexedFile
object:

• When constructing the BioIndexedFile object, use the Interpreter
property name/property value pair

• After constructing the BioIndexedFile object, set the Interpreter
property

Note For more information on setting the Interpreter property of a
BioIndexedFile object, see BioIndexedFile class.

Reading a Subset of Entries
The read method reads and parses a subset of entries that you specify using
either entry indices or keys.

Example
To quickly find all the gene ontology (GO) terms associated with a particular
gene because the entry keys are gene names:

1 Set the Interpreter property of the gene2goObj BioIndexedFile object
to a handle to a function that reads entries and returns only the column
containing the GO term. In this case the interpreter is a handle to an
anonymous function that accepts strings and extracts strings that start
with the characters GO.

gene2goObj.Interpreter = @(x) regexp(x,'GO:\d+','match')

2 Read only the entries that have a key of YAT2, and return their GO terms.

GO_YAT2_entries = read(gene2goObj, 'YAT2')

GO_YAT2_entries =

'GO:0004092' 'GO:0005737' 'GO:0006066' 'GO:0006066' 'GO:0009437'

1-39

1 Getting Started

1-40

2

Sequence Analysis

Sequence analysis is the process you use to find information about a nucleotide
or amino acid sequence using computational methods. Common tasks in
sequence analysis are identifying genes, determining the similarity of two
genes, determining the protein coded by a gene, and determining the function
of a gene by finding a similar gene in another organism with a known function.

• “Example: Sequence Statistics” on page 2-2

• “Example: Sequence Alignment” on page 2-22

• “Sequence Tool” on page 2-42

• “Multiple Sequence Alignment Viewer” on page 2-56

• “Storing and Managing Short-Read Sequence Data in Objects” on page 2-63

2 Sequence Analysis

Example: Sequence Statistics

In this section...

“Overview of Example” on page 2-2

“Determining Nucleotide Content” on page 2-2

“Reading Sequence Information” on page 2-5

“Determining Nucleotide Composition” on page 2-6

“Determining Codon Composition” on page 2-11

“Open Reading Frames” on page 2-15

“Amino Acid Conversion and Composition” on page 2-18

Overview of Example
After sequencing a piece of DNA, one of the first tasks is to investigate the
nucleotide content in the sequence. Starting with a DNA sequence, this
example uses sequence statistics functions to determine mono-, di-, and
trinucleotide content, and to locate open reading frames.

Determining Nucleotide Content
The following procedure illustrates how to use the MATLAB Help browser
to search the Web for information. In this example you are interested in
studying the human mitochondrial genome. While many genes that code for
mitochondrial proteins are found in the cell nucleus, the mitochondrial has
genes that code for proteins used to produce energy.

First research information about the human mitochondria and find the
nucleotide sequence for the genome. Next, look at the nucleotide content for
the entire sequence. And finally, determine open reading frames and extract
specific gene sequences.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB
Command Window, type

web('http://www.ncbi.nlm.nih.gov/')

2-2

Example: Sequence Statistics

A separate browser window opens with the home page for the NCBI Web
site.

2 Search the NCBI Web site for information. For example, to search for the
human mitochondrion genome, from the Search list, select Genome , and in
the Search list, enter mitochondrion homo sapiens.

The NCBI Web search returns a list of links to relevant pages.

3 Select a result page. For example, click the link labeled NC_012920.

The MATLAB Help browser displays the NCBI page for the human
mitochondrial genome.

2-3

2 Sequence Analysis

2-4

Example: Sequence Statistics

Reading Sequence Information
The following procedure illustrates how to find a nucleotide sequence in
a public database and read the sequence information into the MATLAB
environment. Many public databases for nucleotide sequences are
accessible from the Web. The MATLAB Command Window provides an
integrated environment for bringing sequence information into the MATLAB
environment.

The consensus sequence for the human mitochondrial genome has the
GenBank accession number NC_012920. Since the whole GenBank entry is
quite large and you might only be interested in the sequence, you can get
just the sequence information.

1 Get sequence information from a Web database. For example, to retrieve
sequence information for the human mitochondrial genome, in the
MATLAB Command Window, type

mitochondria = getgenbank('NC_012920','SequenceOnly',true)

The getgenbank function retrieves the nucleotide sequence from the
GenBank database and creates a character array.

mitochondria =
GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT
TTGGTATTTTCGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG
GAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCTCATT
CTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTACTA
AAGT . . .

2 If you don’t have a Web connection, you can load the data from a MAT file
included with the Bioinformatics Toolbox software, using the command

load mitochondria

The load function loads the sequence mitochondria into the MATLAB
Workspace.

3 Get information about the sequence. Type

whos mitochondria

2-5

2 Sequence Analysis

Information about the size of the sequence displays in the MATLAB
Command Window.

Name Size Bytes Class Attributes

mitochondria 1x16569 33138 char

Determining Nucleotide Composition
The following procedure illustrates how to determine the monomers and
dimers, and then visualize data in graphs and bar plots. Sections of a DNA
sequence with a high percent of A+T nucleotides usually indicate intergenic
parts of the sequence, while low A+T and higher G+C nucleotide percentages
indicate possible genes. Many times high CG dinucleotide content is located
before a gene.

After you read a sequence into the MATLAB environment, you can use
the sequence statistics functions to determine if your sequence has the
characteristics of a protein-coding region. This procedure uses the human
mitochondrial genome as an example. See “Reading Sequence Information”
on page 2-5.

1 Plot monomer densities and combined monomer densities in a graph. In
the MATLAB Command Window, type

ntdensity(mitochondria)

This graph shows that the genome is A+T rich.

2-6

Example: Sequence Statistics

2 Count the nucleotides using the basecount function.

basecount(mitochondria)

A list of nucleotide counts is shown for the 5’-3’ strand.

ans =
A: 5124
C: 5181
G: 2169
T: 4094

2-7

2 Sequence Analysis

3 Count the nucleotides in the reverse complement of a sequence using the
seqrcomplement function.

basecount(seqrcomplement(mitochondria))

As expected, the nucleotide counts on the reverse complement strand are
complementary to the 5’-3’ strand.

ans =
A: 4094
C: 2169
G: 5181
T: 5124

4 Use the function basecount with the chart option to visualize the
nucleotide distribution.

figure
basecount(mitochondria,'chart','pie');

A pie chart displays in the MATLAB Figure window.

2-8

Example: Sequence Statistics

5 Count the dimers in a sequence and display the information in a bar chart.

figure
dimercount(mitochondria,'chart','bar')

ans =

AA: 1604
AC: 1495
AG: 795
AT: 1230

2-9

2 Sequence Analysis

CA: 1534
CC: 1771
CG: 435
CT: 1440
GA: 613
GC: 711
GG: 425
GT: 419
TA: 1373
TC: 1204
TG: 513
TT: 1004

2-10

Example: Sequence Statistics

Determining Codon Composition
The following procedure illustrates how to look at codons for the six reading
frames. Trinucleotides (codon) code for an amino acid, and there are 64
possible codons in a nucleotide sequence. Knowing the percent of codons
in your sequence can be helpful when you are comparing with tables for
expected codon usage.

After you read a sequence into the MATLAB environment, you can analyze the
sequence for codon composition. This procedure uses the human mitochondria
genome as an example. See “Reading Sequence Information” on page 2-5.

2-11

2 Sequence Analysis

1 Count codons in a nucleotide sequence. In the MATLAB Command
Window, type

codoncount(mitochondria)

The codon counts for the first reading frame displays.

AAA - 167 AAC - 171 AAG - 71 AAT - 130
ACA - 137 ACC - 191 ACG - 42 ACT - 153
AGA - 59 AGC - 87 AGG - 51 AGT - 54
ATA - 126 ATC - 131 ATG - 55 ATT - 113
CAA - 146 CAC - 145 CAG - 68 CAT - 148
CCA - 141 CCC - 205 CCG - 49 CCT - 173
CGA - 40 CGC - 54 CGG - 29 CGT - 27
CTA - 175 CTC - 142 CTG - 74 CTT - 101
GAA - 67 GAC - 53 GAG - 49 GAT - 35
GCA - 81 GCC - 101 GCG - 16 GCT - 59
GGA - 36 GGC - 47 GGG - 23 GGT - 28
GTA - 43 GTC - 26 GTG - 18 GTT - 41
TAA - 157 TAC - 118 TAG - 94 TAT - 107
TCA - 125 TCC - 116 TCG - 37 TCT - 103
TGA - 64 TGC - 40 TGG - 29 TGT - 26
TTA - 96 TTC - 107 TTG - 47 TTT - 78

2 Count the codons in all six reading frames and plot the results in heat maps.

for frame = 1:3

figure

subplot(2,1,1);

codoncount(mitochondria,'frame',frame,'figure',true,...

'geneticcode','Vertebrate Mitochondrial');

title(sprintf('Codons for frame %d',frame));

subplot(2,1,2);

codoncount(mitochondria,'reverse',true,'frame',frame,...

'figure',true,'geneticcode','Vertebrate Mitochondrial');

title(sprintf('Codons for reverse frame %d',frame));

end

Heat maps display all 64 codons in the 6 reading frames.

2-12

Example: Sequence Statistics

2-13

2 Sequence Analysis

2-14

Example: Sequence Statistics

Open Reading Frames
The following procedure illustrates how to locate the open reading frames
using a specific genetic code. Determining the protein-coding sequence for a
eukaryotic gene can be a difficult task because introns (noncoding sections)
are mixed with exons. However, prokaryotic genes generally do not have
introns and mRNA sequences have the introns removed. Identifying the
start and stop codons for translation determines the protein-coding section,
or open reading frame (ORF), in a sequence. Once you know the ORF for a
gene or mRNA, you can translate a nucleotide sequence to its corresponding
amino acid sequence.

2-15

2 Sequence Analysis

After you read a sequence into the MATLAB environment, you can analyze
the sequence for open reading frames. This procedure uses the human
mitochondria genome as an example. See “Reading Sequence Information”
on page 2-5.

1 Display open reading frames (ORFs) in a nucleotide sequence. In the
MATLAB Command Window, type:

seqshoworfs(mitochondria);

If you compare this output to the genes shown on the NCBI page for
NC_012920, there are fewer genes than expected. This is because vertebrate
mitochondria use a genetic code slightly different from the standard genetic
code. For a list of genetic codes, see the “Genetic Code” table in the aa2nt
reference page in the Bioinformatics Toolbox Reference.

2 Display ORFs using the Vertebrate Mitochondrial code.

orfs= seqshoworfs(mitochondria,...
'GeneticCode','Vertebrate Mitochondrial',...
'alternativestart',true);

Notice that there are now two large ORFs on the third reading frame. One
starts at position 4470 and the other starts at 5904. These correspond to
the genes ND2 (NADH dehydrogenase subunit 2 [Homo sapiens]) and
COX1 (cytochrome c oxidase subunit I) genes.

3 Find the corresponding stop codon. The start and stop positions for ORFs
have the same indices as the start positions in the fields Start and Stop.

ND2Start = 4470;
StartIndex = find(orfs(3).Start == ND2Start)
ND2Stop = orfs(3).Stop(StartIndex)

The stop position displays.

ND2Stop =

5511

2-16

Example: Sequence Statistics

4 Using the sequence indices for the start and stop of the gene, extract the
subsequence from the sequence.

ND2Seq = mitochondria(ND2Start:ND2Stop)

The subsequence (protein-coding region) is stored in ND2Seq and displayed
on the screen.

attaatcccctggcccaacccgtcatctactctaccatctttgcaggcac
actcatcacagcgctaagctcgcactgattttttacctgagtaggcctag
aaataaacatgctagcttttattccagttctaaccaaaaaaataaaccct
cgttccacagaagctgccatcaagtatttcctcacgcaagcaaccgcatc
cataatccttc . . .

5 Determine the codon distribution.

codoncount (ND2Seq)

The codon count shows a high amount of ACC, ATA, CTA, and ATC.

AAA - 10 AAC - 14 AAG - 2 AAT - 6
ACA - 11 ACC - 24 ACG - 3 ACT - 5
AGA - 0 AGC - 4 AGG - 0 AGT - 1
ATA - 23 ATC - 24 ATG - 1 ATT - 8
CAA - 8 CAC - 3 CAG - 2 CAT - 1
CCA - 4 CCC - 12 CCG - 2 CCT - 5
CGA - 0 CGC - 3 CGG - 0 CGT - 1
CTA - 26 CTC - 18 CTG - 4 CTT - 7
GAA - 5 GAC - 0 GAG - 1 GAT - 0
GCA - 8 GCC - 7 GCG - 1 GCT - 4
GGA - 5 GGC - 7 GGG - 0 GGT - 1
GTA - 3 GTC - 2 GTG - 0 GTT - 3
TAA - 0 TAC - 8 TAG - 0 TAT - 2
TCA - 7 TCC - 11 TCG - 1 TCT - 4
TGA - 10 TGC - 0 TGG - 1 TGT - 0
TTA - 8 TTC - 7 TTG - 1 TTT - 8

6 Look up the amino acids for codons ATA, CTA, ACC, and ATC.

aminolookup('code',nt2aa('ATA'))
aminolookup('code',nt2aa('CTA'))

2-17

2 Sequence Analysis

aminolookup('code',nt2aa('ACC'))
aminolookup('code',nt2aa('ATC'))

The following displays:

Ile isoleucine
Leu leucine
Thr threonine
Ile isoleucine

Amino Acid Conversion and Composition
The following procedure illustrates how to extract the protein-coding sequence
from a gene sequence and convert it to the amino acid sequence for the
protein. Determining the relative amino acid composition of a protein will
give you a characteristic profile for the protein. Often, this profile is enough
information to identify a protein. Using the amino acid composition, atomic
composition, and molecular weight, you can also search public databases
for similar proteins.

After you locate an open reading frame (ORF) in a gene, you can convert it to
an amino sequence and determine its amino acid composition. This procedure
uses the human mitochondria genome as an example. See “Open Reading
Frames” on page 2-15.

1 Convert a nucleotide sequence to an amino acid sequence. In this example,
only the protein-coding sequence between the start and stop codons is
converted.

ND2AASeq = nt2aa(ND2Seq,'geneticcode',...
'Vertebrate Mitochondrial')

The sequence is converted using the Vertebrate Mitochondrial genetic
code. Because the property AlternativeStartCodons is set to 'true' by
default, the first codon att is converted to M instead of I.

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNP
RSTEAAIKYFLTQATASMILLMAILFNNMLSGQWTMTNTTNQYSSLMIMM
AMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLN
VSLLLTLSILSIMAGSWGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNM
TILNLTIYIILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLS

2-18

Example: Sequence Statistics

LGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYST
SITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL

2 Compare your conversion with the published conversion in the GenPept
database.

ND2protein = getgenpept('YP_003024027','sequenceonly',true)

The getgenpept function retrieves the published conversion from the NCBI
database and reads it into the MATLAB Workspace.

3 Count the amino acids in the protein sequence.

aacount(ND2AASeq, 'chart','bar')

A bar graph displays. Notice the high content for leucine, threonine and
isoleucine, and also notice the lack of cysteine and aspartic acid.

2-19

2 Sequence Analysis

4 Determine the atomic composition and molecular weight of the protein.

atomiccomp(ND2AASeq)
molweight (ND2AASeq)

The following displays in the MATLAB Workspace:

ans =

C: 1818
H: 2882
N: 420
O: 471

2-20

Example: Sequence Statistics

S: 25

ans =

3.8960e+004

If this sequence was unknown, you could use this information to identify
the protein by comparing it with the atomic composition of other proteins
in a database.

2-21

2 Sequence Analysis

Example: Sequence Alignment

In this section...

“Overview of Example” on page 2-22

“Finding a Model Organism to Study” on page 2-22

“Retrieving Sequence Information from a Public Database” on page 2-24

“Searching a Public Database for Related Genes” on page 2-27

“Locating Protein Coding Sequences” on page 2-29

“Comparing Amino Acid Sequences” on page 2-33

Overview of Example
Determining the similarity between two sequences is a common task in
computational biology. Starting with a nucleotide sequence for a human gene,
this example uses alignment algorithms to locate and verify a corresponding
gene in a model organism.

Finding a Model Organism to Study
The following procedure illustrates how to use the MATLAB Help browser
to search the Web for information. In this example, you are interested in
studying Tay-Sachs disease. Tay-Sachs is an autosomal recessive disease
caused by the absence of the enzyme beta-hexosaminidase A (Hex A). This
enzyme is responsible for the breakdown of gangliosides (GM2) in brain and
nerve cells.

First, research information about Tay-Sachs and the enzyme that is associated
with this disease, then find the nucleotide sequence for the human gene
that codes for the enzyme, and finally find a corresponding gene in another
organism to use as a model for study.

1 Use the MATLAB Help browser to explore the Web. In the MATLAB
Command window, type

web('http://www.ncbi.nlm.nih.gov/')

2-22

Example: Sequence Alignment

The MATLAB Help browser opens with the home page for the NCBI Web
site.

2 Search the NCBI Web site for information. For example, to search for
Tay-Sachs, from the Search list, select NCBI Web Site, and in the for
box, enter Tay-Sachs.

The NCBI Web search returns a list of links to relevant pages.

3 Select a result page. For example, click the link labeled Tay-Sachs
Disease.

A page in the genes and diseases section of the NCBI Web site opens. This
section provides a comprehensive introduction to medical genetics. In
particular, this page contains an introduction and pictorial representation
of the enzyme Hex A and its role in the metabolism of the lipid GM2
ganglioside.

2-23

2 Sequence Analysis

4 After completing your research, you have concluded the following:

The gene HEXA codes for the alpha subunit of the dimer enzyme
hexosaminidase A (Hex A), while the gene HEXB codes for the beta subunit
of the enzyme. A third gene, GM2A, codes for the activator protein GM2.
However, it is a mutation in the gene HEXA that causes Tay-Sachs.

Retrieving Sequence Information from a Public
Database
The following procedure illustrates how to find the nucleotide sequence for a
human gene in a public database and read the sequence information into the
MATLAB environment. Many public databases for nucleotide sequences (for
example, GenBank, EMBL-EBI) are accessible from the Web. The MATLAB
Command Window with the MATLAB Help browser provide an integrated
environment for searching the Web and bringing sequence information into
the MATLAB environment.

After you locate a sequence, you need to move the sequence data into the
MATLAB Workspace.

2-24

Example: Sequence Alignment

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB
Command Widow, type

web('http://www.ncbi.nlm.nih.gov/')

The MATLAB Help browser window opens with the NCBI home page.

2 Search for the gene you are interested in studying. For example, from the
Search list, select Nucleotide, and in the for box enter Tay-Sachs.

The search returns entries for the genes that code the alpha and beta
subunits of the enzyme hexosaminidase A (Hex A), and the gene that codes
the activator enzyme. The NCBI reference for the human gene HEXA has
accession number NM_000520.

2-25

2 Sequence Analysis

3 Get sequence data into the MATLAB environment. For example, to get
sequence information for the human gene HEXA, type

humanHEXA = getgenbank('NM_000520')

Note Blank spaces in GenBank accession numbers use the underline
character. Entering 'NM 00520' returns the wrong entry.

The human gene is loaded into the MATLAB Workspace as a structure.

humanHEXA =

LocusName: 'NM_000520'

LocusSequenceLength: '2255'

LocusNumberofStrands: ''

LocusTopology: 'linear'

2-26

Example: Sequence Alignment

LocusMoleculeType: 'mRNA'

LocusGenBankDivision: 'PRI'

LocusModificationDate: '13-AUG-2006'

Definition: 'Homo sapiens hexosaminidase A (alpha polypeptide) (HEXA), mRNA.'

Accession: 'NM_000520'

Version: 'NM_000520.2'

GI: '13128865'

Project: []

Keywords: []

Segment: []

Source: 'Homo sapiens (human)'

SourceOrganism: [4x65 char]

Reference: {1x58 cell}

Comment: [15x67 char]

Features: [74x74 char]

CDS: [1x1 struct]

Sequence: [1x2255 char]

SearchURL: [1x108 char]

RetrieveURL: [1x97 char]

Searching a Public Database for Related Genes
The following procedure illustrates how to find the nucleotide sequence for
a mouse gene related to a human gene, and read the sequence information
into the MATLAB environment. The sequence and function of many genes
is conserved during the evolution of species through homologous genes.
Homologous genes are genes that have a common ancestor and similar
sequences. One goal of searching a public database is to find similar genes.
If you are able to locate a sequence in a database that is similar to your
unknown gene or protein, it is likely that the function and characteristics of
the known and unknown genes are the same.

After finding the nucleotide sequence for a human gene, you can do a BLAST
search or search in the genome of another organism for the corresponding
gene. This procedure uses the mouse genome as an example.

1 Open the MATLAB Help browser to the NCBI Web site. In the MATLAB
Command window, type

web('http://www.ncbi.nlm.nih.gov')

2-27

2 Sequence Analysis

2 Search the nucleotide database for the gene or protein you are interested in
studying. For example, from the Search list, select Nucleotide, and in the
for box enter hexosaminidase A.

The search returns entries for the mouse and human genomes. The NCBI
reference for the mouse gene HEXA has accession number AK080777.

3 Get sequence information for the mouse gene into the MATLAB
environment. Type

mouseHEXA = getgenbank('AK080777')

2-28

Example: Sequence Alignment

The mouse gene sequence is loaded into the MATLAB Workspace as a
structure.

mouseHEXA =

LocusName: 'AK080777'
LocusSequenceLength: '1839'

LocusNumberofStrands: ''
LocusTopology: 'linear'

LocusMoleculeType: 'mRNA'
LocusGenBankDivision: 'HTC'

LocusModificationDate: '02-SEP-2005'
Definition: [1x150 char]
Accession: 'AK080777'

Version: 'AK080777.1'
GI: '26348756'

Project: []
Keywords: 'HTC; CAP trapper.'
Segment: []
Source: 'Mus musculus (house mouse)'

SourceOrganism: [4x65 char]
Reference: {1x8 cell}

Comment: [8x66 char]
Features: [33x74 char]

CDS: [1x1 struct]
Sequence: [1x1839 char]

SearchURL: [1x107 char]
RetrieveURL: [1x97 char]

Locating Protein Coding Sequences
The following procedure illustrates how to convert a sequence from nucleotides
to amino acids and identify the open reading frames. A nucleotide sequence
includes regulatory sequences before and after the protein coding section. By
analyzing this sequence, you can determine the nucleotides that code for
the amino acids in the final protein.

After you have a list of genes you are interested in studying, you can
determine the protein coding sequences. This procedure uses the human gene
HEXA and mouse gene HEXA as an example.

2-29

2 Sequence Analysis

1 If you did not retrieve gene data from the Web, you can load example data
from a MAT-file included with the Bioinformatics Toolbox software. In the
MATLAB Command window, type

load hexosaminidase

The structures humanHEXA and mouseHEXA load into the MATLAB
Workspace.

2 Locate open reading frames (ORFs) in the human gene. For example, for
the human gene HEXA, type

humanORFs = seqshoworfs(humanHEXA.Sequence)

seqshoworfs creates the output structure humanORFs. This structure
contains the position of the start and stop codons for all open reading
frames (ORFs) on each reading frame.

humanORFs =

1x3 struct array with fields:
Start
Stop

The Help browser opens displaying the three reading frames with the
ORFs colored blue, red, and green. Notice that the longest ORF is in the
first reading frame.

2-30

Example: Sequence Alignment

3 Locate open reading frames (ORFs) in the mouse gene. Type:

2-31

2 Sequence Analysis

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

seqshoworfs creates the structure mouseORFS.

mouseORFs =

1x3 struct array with fields:
Start
Stop

The mouse gene shows the longest ORF on the first reading frame.

2-32

Example: Sequence Alignment

Comparing Amino Acid Sequences
The following procedure illustrates how to use global and local alignment
functions to compare two amino acid sequences. You could use alignment
functions to look for similarities between two nucleotide sequences, but
alignment functions return more biologically meaningful results when you
are using amino acid sequences.

After you have located the open reading frames on your nucleotide sequences,
you can convert the protein coding sections of the nucleotide sequences to
their corresponding amino acid sequences, and then you can compare them
for similarities.

1 Using the open reading frames identified previously, convert the human
and mouse DNA sequences to the amino acid sequences. Because both the
human and mouse HEXA genes were in the first reading frames (default),
you do not need to indicate which frame. Type

humanProtein = nt2aa(humanHEXA.Sequence);
mouseProtein = nt2aa(mouseHEXA.Sequence);

2 Draw a dot plot comparing the human and mouse amino acid sequences.
Type

seqdotplot(mouseProtein,humanProtein,4,3)
ylabel('Mouse hexosaminidase A (alpha subunit)')
xlabel('Human hexosaminidase A (alpha subunit)')

Dot plots are one of the easiest ways to look for similarity between
sequences. The diagonal line shown below indicates that there may be a
good alignment between the two sequences.

2-33

2 Sequence Analysis

3 Globally align the two amino acid sequences, using the Needleman-Wunsch
algorithm. Type

[GlobalScore, GlobalAlignment] = nwalign(humanProtein,...
mouseProtein);

showalignment(GlobalAlignment)

showalignment displays the global alignment of the two sequences in
the Help browser. Notice that the calculated identity between the two
sequences is 60%.

2-34

Example: Sequence Alignment

2-35

2 Sequence Analysis

The alignment is very good between amino acid position 69 and 599, after
which the two sequences appear to be unrelated. Notice that there is a
stop (*) in the sequence at this point. If you shorten the sequences to
include only the amino acids that are in the protein you might get a better
alignment. Include the amino acid positions from the first methionine (M) to
the first stop (*) that occurs after the first methionine.

4 Trim the sequence from the first start amino acid (usually M) to the first
stop (*) and then try alignment again. Find the indices for the stops in
the sequences.

humanStops = find(humanProtein == '*')

humanStops =

41 599 611 713 722 730

mouseStops = find(mouseProtein == '*')

mouseStops =

539 557 574 606

Looking at the amino acid sequence for humanProtein, the first M is at
position 70, and the first stop after that position is actually the second
stop in the sequence (position 599). Looking at the amino acid sequence
for mouseProtein, the first M is at position 11, and the first stop after that
position is the first stop in the sequence (position 557).

5 Truncate the sequences to include only amino acids in the protein and
the stop.

humanProteinORF = humanProtein(70:humanStops(2))

humanProteinORF =

MTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYVLYPNNFQFQYDV
SSAAQPGCSVLDEAFQRYRDLLFGSGSWPRPYLTGKRHTLEKNVLVVSVV
TPGCNQLPTLESVENYTLTINDDQCLLLSETVWGALRGLETFSQLVWKSA
EGTFFINKTEIEDFPRFPHRGLLLDTSRHYLPLSSILDTLDVMAYNKLNV

2-36

Example: Sequence Alignment

FHWHLVDDPSFPYESFTFPELMRKGSYNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGIPGLLTPCYSGSEPSGTFGPVNPSLNNTYEF
MSTFFLEVSSVFPDFYLHLGGDEVDFTCWKSNPEIQDFMRKKGFGEDFKQ
LESFYIQTLLDIVSSYGKGYVVWQEVFDNKVKIQPDTIIQVWREDIPVNY
MKELELVTKAGFRALLSAPWYLNRISYGPDWKDFYIVEPLAFEGTPEQKA
LVIGGEACMWGEYVDNTNLVPRLWPRAGAVAERLWSNKLTSDLTFAYERL
SHFRCELLRRGVQAQPLNVGFCEQEFEQT*

mouseProteinORF = mouseProtein(11:mouseStops(1))

mouseProteinORF =

MAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYTLYPNNFQFRYHV
SSAAQAGCVVLDEAFRRYRNLLFGSGSWPRPSFSNKQQTLGKNILVVSVV
TAECNEFPNLESVENYTLTINDDQCLLASETVWGALRGLETFSQLVWKSA
EGTFFINKTKIKDFPRFPHRGVLLDTSRHYLPLSSILDTLDVMAYNKFNV
FHWHLVDDSSFPYESFTFPELTRKGSFNPVTHIYTAQDVKEVIEYARLRG
IRVLAEFDTPGHTLSWGPGAPGLLTPCYSGSHLSGTFGPVNPSLNSTYDF
MSTLFLEISSVFPDFYLHLGGDEVDFTCWKSNPNIQAFMKKKGFTDFKQL
ESFYIQTLLDIVSDYDKGYVVWQEVFDNKVKVRPDTIIQVWREEMPVEYM
LEMQDITRAGFRALLSAPWYLNRVKYGPDWKDMYKVEPLAFHGTPEQKAL
VIGGEACMWGEYVDSTNLVPRLWPRAGAVAERLWSSNLTTNIDFAFKRLS
HFRCELVRRGIQAQPISVGCCEQEFEQT*

6 Globally align the trimmed amino acid sequences. Type

[GlobalScore_trim, GlobalAlignment_trim] = nwalign(humanProteinORF,...
mouseProteinORF);

showalignment(GlobalAlignment_trim)

showalignment displays the results for the second global alignment. Notice
that the percent identity for the untrimmed sequences is 60% and 84% for
trimmed sequences.

2-37

2 Sequence Analysis

7 Another way to truncate an amino acid sequence to only those amino acids
in the protein is to first truncate the nucleotide sequence with indices from

2-38

Example: Sequence Alignment

the seqshoworfs function. Remember that the ORF for the human HEXA
gene and the ORF for the mouse HEXA were both on the first reading
frame.

humanORFs = seqshoworfs(humanHEXA.Sequence)

humanORFs =

1x3 struct array with fields:
Start
Stop

mouseORFs = seqshoworfs(mouseHEXA.Sequence)

mouseORFs =

1x3 struct array with fields:
Start
Stop

humanPORF = nt2aa(humanHEXA.Sequence(humanORFs(1).Start(1):...
humanORFs(1).Stop(1)));

mousePORF = nt2aa(mouseHEXA.Sequence(mouseORFs(1).Start(1):...
mouseORFs(1).Stop(1)));

[GlobalScore2, GlobalAlignment2] = nwalign(humanPORF, mousePORF);

Show the alignment in the Help browser.

showalignment(GlobalAlignment2)

The result from first truncating a nucleotide sequence before converting it
to an amino acid sequence is the same as the result from truncating the
amino acid sequence after conversion. See the result in step 6.

An alternative method to working with subsequences is to use a local
alignment function with the nontruncated sequences.

2-39

2 Sequence Analysis

8 Locally align the two amino acid sequences using a Smith-Waterman
algorithm. Type

[LocalScore, LocalAlignment] = swalign(humanProtein,...
mouseProtein)

LocalScore =
1057

LocalAlignment =

RGDQR-AMTSSRLWFSLLLAAAFAGRATALWPWPQNFQTSDQRYV . . .
|| | ||:: ||| |||||||:| ||||||||| :|| :||: . . .
RGAGRWAMAGCRLWVSLLLAAALACLATALWPWPQYIQTYHRRYT . . .

9 Show the alignment in color.

showalignment(LocalAlignment)

2-40

Example: Sequence Alignment

2-41

2 Sequence Analysis

Sequence Tool

In this section...

“Overview of the Sequence Tool” on page 2-42

“Importing a Sequence” on page 2-42

“Viewing Nucleotide Sequence Information” on page 2-44

“Searching for Words” on page 2-46

“Exploring Open Reading Frames” on page 2-48

“Viewing Amino Acid Sequence Statistics” on page 2-51

“Closing the Sequence Tool” on page 2-55

“References” on page 2-55

Overview of the Sequence Tool
The Sequence Tool window integrates many of the sequence functions in the
toolbox. Instead of entering commands in the MATLAB Command Window,
you can select and enter options.

Importing a Sequence
The first step when analyzing a nucleotide or amino acid sequence is to import
sequence information into the MATLAB environment. The Sequence Tool can
connect to Web databases such as NCBI and EMBL and read information into
the MATLAB environment.

The following procedure illustrates how to retrieve sequence information from
the NCBI database on the Web. This example uses the GenBank accession
number NM_000520, which is the human gene HEXA that is associated with
Tay-Sachs disease.

1 In the MATLAB Command Window, type

seqtool

The Sequence Tool window opens without a sequence loaded. Notice that
the panes to the right and bottom are blank.

2-42

Sequence Tool

2 To retrieve a sequence from the NCBI database, select File > Download
Sequence from > NCBI.

The Download Sequence from NCBI dialog box opens.

3 In the Enter Sequence box, type an accession number for an NCBI
database entry, for example, NM_000520. Click the Nucleotide option
button, and then click OK.

The MATLAB software accesses the NCBI database on the Web, loads
nucleotide sequence information for the accession number you entered,
and calculates some basic statistics.

2-43

2 Sequence Analysis

Viewing Nucleotide Sequence Information
After you import a sequence into the Sequence Tool window, you can read
information stored with the sequence, or you can view graphic representations
for ORFs and CDSs.

1 In the left pane tree, click Comments. The right pane displays general
information about the sequence.

2 Now click Features. The right pane displays NCBI feature information,
including index numbers for a gene and any CDS sequences.

3 Click ORF to show the search results for ORFs in the six reading frames.

2-44

Sequence Tool

4 Click Annotated CDS to show the protein coding part of a nucleotide
sequence.

2-45

2 Sequence Analysis

Searching for Words
The following procedure illustrates how to search for characteristic words and
sequence patterns. You will search for sequence patterns like the TATAA box
and patterns for specific restriction enzymes.

1 Select Sequence > Find Word.

2 In the Find Word dialog box, type a sequence word or pattern, for example,
atg, and then click Find.

2-46

Sequence Tool

The Sequence Tool window searches and displays the location of the
selected word.

3 Clear the display by clicking the Clear Word Selection button on
the toolbar.

2-47

2 Sequence Analysis

Exploring Open Reading Frames
The following procedure illustrates how to identify the protein coding part of a
nucleotide sequence and copy it into a new view. Identifying coding sections
of a nucleotide sequence is a common bioinformatics task. After locating the
coding part of a sequence, you can copy it to a new view, translate it to an
amino acid sequence, and continue with your analysis.

1 In the left pane, click ORF.

The Sequence Tool window displays the ORFs for the six reading frames in
the lower-right pane. Hover the cursor over a frame to display information
about it.

2 Click the longest ORF on reading frame 2.

The ORF is highlighted to indicate the part of the sequence that is selected.

3 Right-click the selected ORF and then select Export to Workspace. In
the Export to MATLAB Workspace dialog box, type a variable name, for
example, NM_000520_ORF_2, then click Export.

2-48

Sequence Tool

The NM_000520_ORF_2 variable is added to the MATLAB Workspace.

4 Select File > Import from Workspace. Type the name of a variable
with an exported ORF, for example, NM_000520_ORF_2, and then click
Import.

The Sequence Tool window adds a tab at the bottom for the new sequence
while leaving the original sequence open.

2-49

2 Sequence Analysis

5 In the left pane, click Full Translation. Select Display > Amino Acid
Residue Display > One Letter Code.

The Sequence Tool window displays the amino acid sequence below the
nucleotide sequence.

2-50

Sequence Tool

Viewing Amino Acid Sequence Statistics
The following procedure illustrates how to view an amino acid sequence for
an ORF located in a nucleotide sequence. You can import your own amino
acid sequence, or you can get a protein sequence from the GenBank database.
This example uses the GenBank accession number NP_000511.1, which is the
alpha subunit for a human enzyme associated with Tay-Sachs disease.

1 Select File > Download Sequence from > NCBI.

The Download Sequence from NCBI dialog box opens.

2-51

2 Sequence Analysis

2 In the Enter Sequence box, type an accession number for an NCBI
database entry, for example, NP_000511.1. Click the Protein option
button, and then click OK.

The MATLAB software accesses the NCBI database on the Web and loads
amino acid sequence information for the accession number you entered.

2-52

Sequence Tool

3 Select Display > Amino Acid Color Scheme, and then select Charge,
Function, Hydrophobicity, Structure, or Taylor. For example, select
Function.

The display colors change to highlight charge information about the amino
acid residues. The following table shows color legends for the amino acid
color schemes.

2-53

2 Sequence Analysis

Amino Acid Color Scheme Color Legend

Charge • Acidic — Red

• Basic — Light Blue

• Neutral — Black

Function • Acidic — Red

• Basic — Light Blue

• Hydropobic, nonpolar — Black

• Polar, uncharged — Green

2-54

Sequence Tool

Amino Acid Color Scheme Color Legend

Hydrophobicity • Hydrophilic — Light Blue

• Hydrophobic — Black

Structure • Ambivalent — Dark Green

• External — Light Blue

• Internal — Orange

Taylor Each amino acid is assigned its own
color, based on the colors proposed by
W.R. Taylor.

Closing the Sequence Tool
Close the Sequence Tool window from the MATLAB command line using
the following syntax:

seqtool('close')

References

[1] Taylor, W.R. (1997). Residual colours: a proposal for aminochromography.
Protein Engineering 10, 7, 743–746.

2-55

2 Sequence Analysis

Multiple Sequence Alignment Viewer

In this section...

“Overview of the Multiple Sequence Alignment Viewer” on page 2-56

“Loading Sequence Data and Viewing the Phylogenetic Tree” on page 2-56

“Selecting a Subset of Data from the Phylogenetic Tree” on page 2-57

“Aligning Multiple Sequences” on page 2-58

“Adjusting Multiple Sequence Alignments Manually” on page 2-59

“Closing the Multiple Sequence Alignment Viewer” on page 2-62

Overview of the Multiple Sequence Alignment Viewer
The Multiple Sequence Alignment Viewer is a graphical user interface (GUI)
that integrates many sequence and multiple alignment functions in the
toolbox. Instead of entering commands in the MATLAB Command Window,
you can use this interface to visually inspect a multiple alignment and make
manual adjustments.

Loading Sequence Data and Viewing the
Phylogenetic Tree
Load unaligned sequence data into the MATLAB environment and view it
in a phylogenetic tree.

1 Load sequence data.

load primatesdemodata

2 Create a phylogenetic tree.

tree = seqlinkage(seqpdist(primates),'single', primates);

3 View the phylogenetic tree.

view(tree)

2-56

Multiple Sequence Alignment Viewer

The MATLAB software creates a phytree object in the workspace and loads
the sequence data into the Phylogenetic Tree Tool.

Selecting a Subset of Data from the Phylogenetic Tree
Select the human and chimp branches.

1 From the toolbar, click the Prune icon.

2 Click the branches to prune (remove) from the tree. For this example, click
the branch nodes for gorillas, orangutans, and Neanderthals.

2-57

2 Sequence Analysis

3 Export the selected branches to a second tree. Select File > Export to
Workspace, and then select Only Displayed.

4 In the Export to dialog box, enter the name of a variable. For example,
enter tree2, and then click OK.

5 Extract sequences from the tree object.

primates2 = primates(seqmatch(get(tree2, 'Leafnames'),{primates.Header}));

Aligning Multiple Sequences
After selecting a set of related sequences, you can multiply align them and
view the results.

1 Align multiple sequences.

ma = multialign(primates2);

2 Load aligned sequences in the Multiple Sequence Alignment Viewer.

multialignviewer(ma);

2-58

Multiple Sequence Alignment Viewer

The aligned sequences appear in the Multiple Sequence Alignment Viewer.

Adjusting Multiple Sequence Alignments Manually
Algorithms for aligning multiple sequences do not always produce an optimal
result. By visually inspecting the alignment, you can identify areas that could
use a manual adjustment to improve the alignment.

1 Identify an area where you could improve the alignment.

2-59

2 Sequence Analysis

2 Click a letter to select it, and then move the cursor over the red direction
bar. The cursor changes to a hand.

3 Click and drag the sequence to the right to insert a gap. If there is a gap to
the left, you can also move the sequence to the left and eliminate the gap.

2-60

Multiple Sequence Alignment Viewer

Alternately, to insert a gap, select a character, and then click the Insert
Gap icon on the toolbar or press the spacebar.

Note You cannot delete or add letters to a sequence, but you can add or
delete gaps. If all of the sequences at one alignment position have gaps,
you can delete that column of gaps.

4 Continue adding gaps and moving sequences to improve the alignment.

2-61

2 Sequence Analysis

Closing the Multiple Sequence Alignment Viewer
Close the Multiple Sequence Alignment Viewer window from the MATLAB
command line using the following syntax:

multialignviewer('close')

2-62

Storing and Managing Short-Read Sequence Data in Objects

Storing and Managing Short-Read Sequence Data in
Objects

In this section...

“Overview” on page 2-63

“Representing Sequence and Quality Data in a BioRead Object” on page 2-64

“Representing Sequence, Quality, and Alignment/Mapping Data in a
BioMap Object” on page 2-66

“Retrieving Information from a BioRead or BioMap Object” on page 2-70

“Setting Information in a BioRead or BioMap Object” on page 2-72

“Determining Coverage of a Reference Sequence” on page 2-73

“Constructing Sequence Alignments to a Reference Sequence” on page 2-75

“Filtering Read Sequences Using SAM Flags” on page 2-76

Overview
High-throughput sequencing instruments produce large amounts of short-read
sequence data that can be a challenge to store and manage. Using objects to
contain this data lets you easily access, manipulate, and filter the data.

Bioinformatics Toolbox includes two objects for working with short-read
sequence data.

Object Contains This Information Construct from One of
These

BioRead • Sequence headers

• Read sequences

• Sequence qualities

• BioIndexedFile object

• FASTQ file

• FASTQ structure (created
using the fastqread
function)

• Cell arrays containing
header, sequence, and
quality information

2-63

2 Sequence Analysis

Object Contains This Information Construct from One of
These

(created using the
fastqread function)

• SAM file

BioMap • Sequence headers

• Read sequences

• Sequence qualities

• Sequence alignment and
mapping information
(relative to one reference
sequence)

• BioIndexedFile object

• SAM file

• SAM structure (created
using the samread function)

• BAM structure (created
using the bamread function)

• Cell arrays containing
header, sequence, quality,
and mapping/alignment
information (created using
the samread or bamread
function)

Representing Sequence and Quality Data in a
BioRead Object
A BioRead object represents a collection of read sequences. Each element
in the object is associated with a sequence, sequence header, and sequence
quality information.

Constructing a BioRead Object from a FASTQ-Formatted File
Use the BioRead constructor function to construct a BioRead object from a
FASTQ-formatted file and set the Name property:

BRObj1 = BioRead('fastqfile', 'SRR005164_1_50.fastq', 'Name', 'MyObject')

BRObj1 =

BioRead

2-64

Storing and Managing Short-Read Sequence Data in Objects

Properties:
Quality: {50x1 cell}

Sequence: {50x1 cell}
Header: {50x1 cell}
NSeqs: 50
Name: 'MyObject'

Methods, Superclasses

Constructing a BioRead Object from a Very Large
FASTQ-Formatted File
Some FASTQ-formatted files are very large and can cause an out-of-memory
error when you use them as input to the BioRead function. If this happens,
create a BioIndexedFile object, which lets you access the contents of the
FASTQ-formatted file (up to 4 GB), without loading the file into memory.
You can then use the BioRead constructor function to construct a BioRead
object from the BioIndexedFile object.

1 Create a variable containing the full absolute path of your source FASTQ
file. For your source file, use the SRR005164_1_50.fastq file, which is
included with the Bioinformatics Toolbox software.

sourcefile = which('SRR005164_1_50.fastq');

2 Use the BioIndexedFile constructor function to construct a
BioIndexedFile object from the SRR005164_1_50.fastq source file. Save
the index file in the Current Folder.

FASTQBIFObj = BioIndexedFile('fastq', sourcefile, '.');

The BioIndexedFile constructor function constructs FASTQBIFObj, a
BioIndexedFile object, and also creates an index file with the same name
as the source file, but with an IDX extension. It stores this index file in the
Current Folder because you specified this location.

2-65

2 Sequence Analysis

Caution Do not modify the index file. If you modify it, you can get invalid
results. Also, the constructor function cannot use a modified index file to
create future objects from the associated source file.

3 Use the BioRead constructor function to construct a BioRead object from
the BioIndexedFile object.

BRObj2 = BioRead(FASTQBIFObj)

BRObj2 =

BioRead

Properties:
Quality: [50x1 File indexed property]

Sequence: [50x1 File indexed property]
Header: [50x1 File indexed property]
NSeqs: 50
Name: ''

Methods, Superclasses

Note Because you constructed this BioRead object from a BioIndexedFile
object, you cannot modify the properties (except for the Name property) of the
BioRead object.

Representing Sequence, Quality, and
Alignment/Mapping Data in a BioMap Object
A BioMap object represents a collection of read sequences that map against
a single reference sequence. Each element in the object is associated with
a read sequence, sequence header, sequence quality information, and
alignment/mapping information.

2-66

Storing and Managing Short-Read Sequence Data in Objects

Constructing a BioMap Object from a SAM Structure

1 Use the samread function to create a SAM structure from a SAM-formatted
file:

SAMStruct = samread('ex2.sam');

2 To construct a valid BioMap object from a SAM-formatted file, the file must
contain only one reference sequence. Determine the number and names
of the reference sequences in your SAM-formatted file using the unique
function to find unique names in the ReferenceName field of the structure:

unique({SAMStruct.ReferenceName})

ans =

'seq1' 'seq2'

3 Use the BioMap constructor function to construct a BioMap object from a
SAM structure. Because the SAM structure contains multiple reference
sequences, use the SubsetRef name-value pair argument to specify one
reference sequence, seq1:

BMObj1 = BioMap(SAMStruct, 'SubsetRef', 'seq1')

BMObj1 =

BioMap

Properties:
Reference: 'seq1'
Signature: {1501x1 cell}

Start: [1501x1 uint32]
MappingQuality: [1501x1 uint8]

Flag: [1501x1 uint16]
MatePosition: [1501x1 uint32]

Quality: {1501x1 cell}
Sequence: {1501x1 cell}

Header: {1501x1 cell}
NSeqs: 1501
Name: ''

2-67

2 Sequence Analysis

Methods, Superclasses

Constructing a BioMap Object from a SAM-Formatted File
Use the BioMap constructor function to construct a BioMap object from a
SAM-formatted file and set the Name property. Because the SAM-formatted
file in this example, ex2.sam, contains multiple reference sequences, use the
SubsetRef name-value pair argument to specify one reference sequence, seq1:

BMObj2 = BioMap('samfile', 'ex2.sam', 'SubsetRef', 'seq1', 'Name', 'MyObject')

BMObj2 =

BioMap

Properties:
Reference: 'seq1'
Signature: {1501x1 cell}

Start: [1501x1 uint32]
MappingQuality: [1501x1 uint8]

Flag: [1501x1 uint16]
MatePosition: [1501x1 uint32]

Quality: {1501x1 cell}
Sequence: {1501x1 cell}

Header: {1501x1 cell}
NSeqs: 1501
Name: 'MyObject'

Methods, Superclasses

Constructing a BioMap Object from a Very Large
SAM-Formatted File
Some SAM-formatted files are very large and can cause an out-of-memory
error when you use them as input to the BioMap function. If this happens,
create a BioIndexedFile object to access the contents of the SAM-formatted
file (up to 4 GB), without loading the file into memory. Then use the BioMap
constructor function to construct a BioMap object from the BioIndexedFile
object.

2-68

Storing and Managing Short-Read Sequence Data in Objects

1 Create a variable containing the full absolute path of your source SAM
file. For your source file, use the ex2.sam file, which is included with the
Bioinformatics Toolbox software.

sourcefile = which('ex2.sam');

2 Use the BioIndexedFile constructor function to construct a
BioIndexedFile object from the ex2.sam source file. Save the index file in
the Current Folder.

SAMBIFObj = BioIndexedFile('sam', sourcefile, '.');

The BioIndexedFile constructor function constructs SAMBIFObj, a
BioIndexedFile object, and also creates an index file with the same name
as the source file, but with an IDX extension. It stores this index file in the
Current Folder as specified.

Caution Do not modify the index file, otherwise you can get invalid
results. Also, the constructor function cannot use a modified index file to
create future objects from the associated source file.

3 Use the getDictionary method to determine the number and names of
the reference sequences in the SAM-formatted file associated with the
SAMBIFObj, the BioIndexedFile object:

getDictionary(SAMBIFObj)

ans =

'seq1'
'seq2'

4 Use the BioMap constructor function to construct a BioMap object from the
BioIndexedFile object. Because the SAM-formatted file contains multiple
reference sequences, use the SubsetRef name-value pair argument to
specify one reference sequence, seq1:

BMObj3 = BioMap(SAMBIFObj, 'SubsetRef', 'seq1')

BMObj3 =

2-69

2 Sequence Analysis

BioMap

Properties:
Reference: 'seq1'
Signature: [1501x1 File indexed property]

Start: [1501x1 File indexed property]
MappingQuality: [1501x1 File indexed property]

Flag: [1501x1 File indexed property]
MatePosition: [1501x1 File indexed property]

Quality: [1501x1 File indexed property]
Sequence: [1501x1 File indexed property]

Header: [1501x1 File indexed property]
NSeqs: 1501
Name: ''

Methods, Superclasses

Note Because you constructed this BioMap object from a BioIndexedFile
object, you cannot modify the properties (except for Name and Reference)
of the BioMap object.

Retrieving Information from a BioRead or BioMap
Object
You can retrieve all or a subset of information from a BioRead or BioMap
object.

Retrieving All Values of a Property from a BioRead or BioMap
Object
Use the get method to retrieve a specific property from all elements in a
BioRead or BioMap object. For example, to retrieve all headers from a BioRead
object, use the get method with the Header property:

allHeaders = get(BRObj1, 'Header');

The previous syntax returns a cell array containing the headers for all the
elements in the BioRead object. For example, to retrieve all start positions of

2-70

Storing and Managing Short-Read Sequence Data in Objects

aligned read sequences from a BioMap object, use the get method with the
Start property:

allStarts = get(BMObj1, 'Start');

The previous syntax returns a vector containing the start positions of aligned
read sequences with respect to the position numbers in the reference sequence
in a BioMap object.

Note Property names are case sensitive. For a list and description of all
properties of a BioRead object, see BioRead class. For a list and description
of all properties of a BioMap object, see BioMap class.

Retrieving a Subset of Information from a BioRead or BioMap
Object
Use specialized get methods with a numeric vector, logical vector, or cell
array of headers to retrieve a subset of information from an object. For
example, to retrieve the first 10 elements from a BioRead object, use the
getSubset method:

newBRObj = getSubset(BRObj1, [1:10]);

The previous syntax returns a new BioRead object containing the first 10
elements in the original BioRead object.

For example, to retrieve the first 12 positions of sequences with headers
SRR005164.1, SRR005164.7, and SRR005164.16, use the getSubsequence
method:

subSeqs = getSubsequence(BRObj1, ...
{'SRR005164.1', 'SRR005164.7', 'SRR005164.16'}, [1:12]')

subSeqs =

'TGGCTTTAAAGC'
'CCCGAAAGCTAG'
'AATTTTGCGGCT'

2-71

2 Sequence Analysis

For example, to retrieve information about the third element in a BioMap
object, use the getInfo method:

Info_3 = getInfo(BMObj1, 3);

The previous syntax returns a tab-delimited string containing this information
for the third element:

• Sequence header

• SAM flags for the sequence

• Start position of the aligned read sequence with respect to the reference
sequence

• Mapping quality score for the sequence

• Signature (CIGAR-formatted string) for the sequence

• Sequence

• Quality scores for sequence positions

Note Method names are case sensitive. For a complete list and description
of methods of a BioRead object, see BioRead class. For a complete list and
description of methods of a BioMap object, see BioMap class.

Setting Information in a BioRead or BioMap Object
Several specialized set methods let you set the properties of a subset of
elements in a BioRead or BioMap object.

Note If you construct a BioRead or BioMap object from a BioIndexedFile
object, you cannot modify the properties of the object (except for Name and
Reference).

Providing Custom Headers for Sequences
To provide custom headers for sequences of interest (in this case sequences 2,
4, and 6), use the setHeader method:

2-72

Storing and Managing Short-Read Sequence Data in Objects

newBRObj = setHeader(BRObj1, {'H2', 'H4', 'H6'}, [2 4 6]);

The previous syntax returns a new object containing the new headers.

Renaming the Reference Sequence
To rename the reference sequence in a BioMap object, use the setReference
method:

BMObj1 = setReference(BMObj1, 'Chromosome7');

The previous syntax updates the name of the reference sequence from seq1 to
Chromosome7 in the BioMap object.

Note Method names are case sensitive. For a complete list and description
of methods of a BioRead object, see BioRead class. For a complete list and
description of methods of a BioMap object, see BioMap class.

Determining Coverage of a Reference Sequence
When working with a BioMap object, you can determine the number of read
sequences that:

• Align within a specific region of the reference sequence

• Align to each position within a specific region of the reference sequence

For example, you can compute the number, indices, and start positions of
the read sequences that align within the first 25 positions of the reference
sequence. To do so, use the getCounts, getIndex, and getStart methods:

Cov = getCounts(BMObj1, 1, 25)

Cov =

12

Indices = getIndex(BMObj1, 1, 25)

Indices =

2-73

2 Sequence Analysis

1
2
3
4
5
6
7
8
9

10
11
12

startPos = getStart(BMObj1, Indices)

startPos =

1
3
5
6
9

13
13
15
18
22
22
24

The first two syntaxes return the number and indices of the read sequences
that align within the specified region of the reference sequence. The last
syntax returns a vector containing the start position of each aligned read
sequence, corresponding to the position numbers of the reference sequence.

For example, you can also compute the number of the read sequences that
align to each of the first 10 positions of the reference sequence. For this
computation, use the getBaseCoverage method:

2-74

Storing and Managing Short-Read Sequence Data in Objects

Cov = getBaseCoverage(BMObj1, 1, 10)

Cov =

1 1 2 2 3 4 4 4 5 5

Constructing Sequence Alignments to a Reference
Sequence
It is useful to construct and view the alignment of the read sequences that
align to a specific region of the reference sequence. It is also helpful to know
which read sequences align to this region in a BioMap object.

For example, to retrieve the alignment of read sequences to the first 12
positions of the reference sequence in a BioMap object, use the getAlignment
method:

[Alignment_1_12, Indices] = getAlignment(BMObj2, 1, 12)

Alignment_1_12 =

CACTAGTGGCTC
CTAGTGGCTC

AGTGGCTC
GTGGCTC

GCTC

Indices =

1
2
3
4
5

Return the headers of the read sequences that align to a specific region of
the reference sequence:

alignedHeaders = getHeader(BMObj2, Indices)

2-75

2 Sequence Analysis

alignedHeaders =

'B7_591:4:96:693:509'
'EAS54_65:7:152:368:113'
'EAS51_64:8:5:734:57'
'B7_591:1:289:587:906'
'EAS56_59:8:38:671:758'

Filtering Read Sequences Using SAM Flags
SAM-formatted files include the status of 11 flags for each read sequence.
These flags describe different sequencing and alignment aspects of a
read sequence. For more information on the flags, see the SAM format
specification. The filterByFlag method lets you filter the read sequences in
a BioMap object by using these flags.

Removing Unmapped Read Sequences

1 Create a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('samfile', 'ex1.sam');

2 Use the filterByFlag method to create a logical vector indicating the read
sequences in a BioMap object that are mapped.

LogicalVec_mapped = filterByFlag(BMObj2, 'unmappedQuery', false);

3 Use this logical vector and the getSubset method to create a new BioMap
object containing only the mapped read sequences.

filteredBMObj_1 = getSubset(BMObj2, LogicalVec_mapped);

Removing Read Sequences That Are Not Mapped in a Pair

1 Create a BioMap object from a SAM-formatted file.

BMObj2 = BioMap('samfile', 'ex1.sam');

2 Use the filterByFlag method to create a logical vector indicating the read
sequences in a BioMap object that are mapped in a proper pair, that is, both
the read sequence and its mate are mapped to the reference sequence.

2-76

http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/SAM1.pdf

Storing and Managing Short-Read Sequence Data in Objects

LogicalVec_paired = filterByFlag(BMObj2, 'pairedInMap', true);

3 Use this logical vector and the getSubset method to create a new BioMap
object containing only the read sequences that are mapped in a proper pair.

filteredBMObj_2 = getSubset(BMObj2, LogicalVec_paired);

2-77

2 Sequence Analysis

2-78

3

Microarray Analysis

• “Storing and Managing Gene Expression Data in Objects” on page 3-2

• “Representing Expression Data Values in DataMatrix Objects” on page 3-5

• “Representing Expression Data Values in ExptData Objects” on page 3-11

• “Representing Sample and Feature Metadata in MetaData Objects” on
page 3-15

• “Representing Experiment Information in a MIAME Object” on page 3-22

• “Representing All Data and Information in an ExpressionSet Object” on
page 3-27

• “Example: Visualizing Microarray Data” on page 3-33

• “Example: Analyzing Gene Expression Profiles” on page 3-57

3 Microarray Analysis

Storing and Managing Gene Expression Data in Objects
Microarray gene expression experiments are complex, containing data and
information from various sources. The data and information from such an
experiment is typically subdivided into four categories:

• Measured expression data values

• Sample metadata

• Microarray feature metadata

• Descriptions of experiment methods and conditions

In MATLAB, you can represent all the previous data and information in an
ExpressionSet object, which typically contains the following objects:

• One ExptData object containing expression values from a microarray
experiment in one or more DataMatrix objects

• One MetaData object containing sample metadata in two dataset arrays

• One MetaData object containing feature metadata in two dataset arrays

• One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its
component objects.

3-2

Storing and Managing Gene Expression Data in Objects

3-3

3 Microarray Analysis

Each element (DataMatrix object) in the ExpressionSet object has an element
name. Also, there is always one DataMatrix object whose element name is
Expressions.

An ExpressionSet object lets you store, manage, and subset the data from a
microarray gene expression experiment. An ExpressionSet object includes
properties and methods that let you access, retrieve, and change data,
metadata, and other information about the microarray experiment. These
properties and methods are useful to view and analyze the data. For a list of
the properties and methods, see ExpressionSet class.

To learn more about constructing and using objects for microarray gene
expression data and information, see:

• “Representing Expression Data Values in DataMatrix Objects” on page 3-5

• “Representing Expression Data Values in ExptData Objects” on page 3-11

• “Representing Sample and Feature Metadata in MetaData Objects” on
page 3-15

• “Representing Experiment Information in a MIAME Object” on page 3-22

• “Representing All Data and Information in an ExpressionSet Object” on
page 3-27

3-4

Representing Expression Data Values in DataMatrix Objects

Representing Expression Data Values in DataMatrix
Objects

In this section...

“Overview of DataMatrix Objects” on page 3-5

“Constructing DataMatrix Objects” on page 3-6

“Getting and Setting Properties of a DataMatrix Object” on page 3-7

“Accessing Data in DataMatrix Objects” on page 3-8

Overview of DataMatrix Objects
The toolbox includes functions, objects, and methods for creating, storing, and
accessing microarray data.

The object constructor function, DataMatrix, lets you create a DataMatrix
object to encapsulate data and metadata (row and column names) from a
microarray experiment. A DataMatrix object stores experimental data in a
matrix, with rows typically corresponding to gene names or probe identifiers,
and columns typically corresponding to sample identifiers. A DataMatrix
object also stores metadata, including the gene names or probe identifiers (as
the row names) and sample identifiers (as the column names).

You can reference microarray expression values in a DataMatrix object the
same way you reference data in a MATLAB array, that is, by using linear or
logical indexing. Alternately, you can reference this experimental data by
gene (probe) identifiers and sample identifiers. Indexing by these identifiers
lets you quickly and conveniently access subsets of the data without having
to maintain additional index arrays.

Many MATLAB operators and arithmetic functions are available to
DataMatrix objects by means of methods. These methods let you modify,
combine, compare, analyze, plot, and access information from DataMatrix
objects. Additionally, you can easily extend the functionality by using
general element-wise functions, dmarrayfun and dmbsxfun, and by manually
accessing the properties of a DataMatrix object.

3-5

3 Microarray Analysis

Note For tables describing the properties and methods of a DataMatrix
object, see the DataMatrix object reference page.

Constructing DataMatrix Objects

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that
contains yeast data. This MAT-file includes three variables: yeastvalues,
a 614-by-7 matrix of gene expression data, genes, a cell array of 614
GenBank accession numbers for labeling the rows in yeastvalues,
and times, a 1-by-7 vector of time values for labeling the columns in
yeastvalues.

load filteredyeastdata

2 Create variables to contain a subset of the data, specifically the first five
rows and first four columns of the yeastvalues matrix, the genes cell
array, and the times vector.

yeastvalues = yeastvalues(1:5,1:4);
genes = genes(1:5,:);
times = times(1:4);

3 Import the microarray object package so that the DataMatrix constructor
function will be available.

import bioma.data.*

4 Use the DataMatrix constructor function to create a small DataMatrix
object from the gene expression data in the variables you created in step 2.

dmo = DataMatrix(yeastvalues,genes,times)

dmo =

0 9.5 11.5 13.5
SS DNA -0.131 1.699 -0.026 0.365
YAL003W 0.305 0.146 -0.129 -0.444
YAL012W 0.157 0.175 0.467 -0.379
YAL026C 0.246 0.796 0.384 0.981

3-6

Representing Expression Data Values in DataMatrix Objects

YAL034C -0.235 0.487 -0.184 -0.669

Getting and Setting Properties of a DataMatrix
Object
You use the get and set methods to retrieve and set properties of a
DataMatrix object.

1 Use the get method to display the properties of the DataMatrix object, dmo.

get(dmo)
Name: ''

RowNames: {5x1 cell}
ColNames: {' 0' ' 9.5' '11.5' '13.5'}

NRows: 5
NCols: 4
NDims: 2

ElementClass: 'double'

2 Use the set method to specify a name for the DataMatrix object, dmo.

dmo = set(dmo,'Name','MyDMObject');

3 Use the get method again to display the properties of the DataMatrix
object, dmo.

get(dmo)
Name: 'MyDMObject'

RowNames: {5x1 cell}
ColNames: {' 0' ' 9.5' '11.5' '13.5'}

NRows: 5
NCols: 4
NDims: 2

ElementClass: 'double'

Note For a description of all properties of a DataMatrix object, see the
DataMatrix object reference page.

3-7

3 Microarray Analysis

Accessing Data in DataMatrix Objects
DataMatrix objects support the following types of indexing to extract, assign,
and delete data:

• Parenthesis () indexing

• Dot . indexing

Parentheses () Indexing
Use parenthesis indexing to extract a subset of the data in dmo and assign
it to a new DataMatrix object dmo2:

dmo2 = dmo(1:5,2:3)
dmo2 =

9.5 11.5
SS DNA 1.699 -0.026
YAL003W 0.146 -0.129
YAL012W 0.175 0.467
YAL026C 0.796 0.384
YAL034C 0.487 -0.184

Use parenthesis indexing to extract a subset of the data using row names and
column names, and assign it to a new DataMatrix object dmo3:

dmo3 = dmo({'SS DNA','YAL012W','YAL034C'},'11.5')

dmo3 =

11.5
SS DNA -0.026
YAL012W 0.467
YAL034C -0.184

Note If you use a cell array of row names or column names to index into a
DataMatrix object, the names must be unique, even though the row names or
column names within the DataMatrix object are not unique.

3-8

Representing Expression Data Values in DataMatrix Objects

Use parenthesis indexing to assign new data to a subset of the elements in
dmo2:

dmo2({'SS DNA', 'YAL003W'}, 1:2) = [1.700 -0.030; 0.150 -0.130]
dmo2 =

9.5 11.5
SS DNA 1.7 -0.03
YAL003W 0.15 -0.13
YAL012W 0.175 0.467
YAL026C 0.796 0.384
YAL034C 0.487 -0.184

Use parenthesis indexing to delete a subset of the data in dmo2:

dmo2({'SS DNA', 'YAL003W'}, :) = []
dmo2 =

9.5 11.5
YAL012W 0.175 0.467
YAL026C 0.796 0.384
YAL034C 0.487 -0.184

Dot . Indexing

Note In the following examples, notice that when using dot indexing with
DataMatrix objects, you specify all rows or all columns using a colon within
single quotation marks, (':').

Use dot indexing to extract the data from the 11.5 column only of dmo:

timeValues = dmo.(':')('11.5')
timeValues =

-0.0260
-0.1290
0.4670
0.3840

-0.1840

3-9

3 Microarray Analysis

Use dot indexing to assign new data to a subset of the elements in dmo:

dmo.(1:2)(':') = 7
dmo =

0 9.5 11.5 13.5
SS DNA 7 7 7 7
YAL003W 7 7 7 7
YAL012W 0.157 0.175 0.467 -0.379
YAL026C 0.246 0.796 0.384 0.981
YAL034C -0.235 0.487 -0.184 -0.669

Use dot indexing to delete an entire variable from dmo:

dmo.YAL034C = []
dmo =

0 9.5 11.5 13.5
SS DNA 7 7 7 7
YAL003W 7 7 7 7
YAL012W 0.157 0.175 0.467 -0.379
YAL026C 0.246 0.796 0.384 0.981

Use dot indexing to delete two columns from dmo:

dmo.(':')(2:3)=[]

dmo =

0 13.5
SS DNA 7 7
YAL003W 7 7
YAL012W 0.157 -0.379
YAL026C 0.246 0.981

3-10

Representing Expression Data Values in ExptData Objects

Representing Expression Data Values in ExptData Objects

In this section...

“Overview of ExptData Objects” on page 3-11

“Constructing ExptData Objects” on page 3-12

“Using Properties of an ExptData Object” on page 3-12

“Using Methods of an ExptData Object” on page 3-13

“References” on page 3-14

Overview of ExptData Objects
You can use an ExptData object to store expression values from a microarray
experiment. An ExprData object stores the data values in one or more
DataMatrix objects, each having the same row names (feature names) and
column names (sample names). Each element (DataMatrix object) in the
ExptData object has an element name.

The following illustrates a small DataMatrix object containing expression
values from three samples (columns) and seven features (rows):

A B C
100001_at 2.26 20.14 31.66
100002_at 158.86 236.25 206.27
100003_at 68.11 105.45 82.92
100004_at 74.32 96.68 84.87
100005_at 75.05 53.17 57.94
100006_at 80.36 42.89 77.21
100007_at 216.64 191.32 219.48

An ExptData object lets you store, manage, and subset the data values from a
microarray experiment. An ExptData object includes properties and methods
that let you access, retrieve, and change data values from a microarray
experiment. These properties and methods are useful to view and analyze the
data. For a list of the properties and methods, see ExptData class.

3-11

3 Microarray Analysis

Constructing ExptData Objects
The mouseExprsData.txt file used in this example contains data from
Hovatta et al., 2005.

1 Import the bioma.data package so that the DataMatrix and ExptData
constructor functions are available.

import bioma.data.*

2 Use the DataMatrix constructor function to create a DataMatrix object
from the gene expression data in the mouseExprsData.txt file. This
file contains a table of expression values and metadata (sample and
feature names) from a microarray experiment done using the Affymetrix
MGU74Av2 GeneChip array. There are 26 sample names (A through Z),
and 500 feature names (probe set names).

dmObj = DataMatrix('File', 'mouseExprsData.txt');

3 Use the ExptData constructor function to create an ExptData object from
the DataMatrix object.

EDObj = ExptData(dmObj);

4 Display information about the ExptData object, EDObj.

EDObj

Experiment Data:
500 features, 26 samples
1 elements
Element names: Elmt1

Note For complete information on constructing ExptData objects, see
ExptData class.

Using Properties of an ExptData Object
To access properties of an ExptData object, use the following syntax:

objectname.propertyname

3-12

Representing Expression Data Values in ExptData Objects

For example, to determine the number of elements (DataMatrix objects) in
an ExptData object:

EDObj.NElements

ans =

1

To set properties of an ExptData object, use the following syntax:

objectname.propertyname = propertyvalue

For example, to set the Name property of an ExptData object:

EDObj.Name = 'MyExptDataObject'

Note Property names are case sensitive. For a list and description of all
properties of an ExptData object, see ExptData class.

Using Methods of an ExptData Object
To use methods of an ExptData object, use either of the following syntaxes:

objectname.methodname

or

methodname(objectname)

For example, to retrieve the sample names from an ExptData object:

EDObj.sampleNames

Columns 1 through 9

'A' 'B' 'C' 'D' 'E' 'F' 'G' 'H' 'I' ...

To return the size of an ExptData object:

size(EDObj)

3-13

3 Microarray Analysis

ans =

500 26

Note For a complete list of methods of an ExptData object, see ExptData
class.

References

[1] Hovatta, I., Tennant, R S., Helton, R., et al. (2005). Glyoxalase 1 and
glutathione reductase 1 regulate anxiety in mice. Nature 438, 662–666.

3-14

Representing Sample and Feature Metadata in MetaData Objects

Representing Sample and Feature Metadata in MetaData
Objects

In this section...

“Overview of MetaData Objects” on page 3-15

“Constructing MetaData Objects” on page 3-16

“Using Properties of a MetaData Object” on page 3-19

“Using Methods of a MetaData Object” on page 3-20

Overview of MetaData Objects
You can store either sample or feature metadata from a microarray gene
expression experiment in a MetaData object. The metadata consists of
variable names, for example, related to either samples or microarray features,
along with descriptions and values for the variables.

A MetaData object stores the metadata in two dataset arrays:

• Values dataset array— A dataset array containing the measured value
of each variable per sample or feature. In this dataset array, the columns
correspond to variables and rows correspond to either samples or features.
The number and names of the columns in this dataset array must match
the number and names of the rows in the Descriptions dataset array. If
this dataset array contains sample metadata, then the number and names
of the rows (samples) must match the number and names of the columns
in the DataMatrix objects in the same ExpressionSet object. If this
dataset array contains feature metadata, then the number and names of
the rows (features) must match the number and names of the rows in the
DataMatrix objects in the same ExpressionSet object.

• Descriptions dataset array — A dataset array containing a list of the
variable names and their descriptions. In this dataset array, each row
corresponds to a variable. The row names are the variable names, and
a column, named VariableDescription, contains a description of the
variable. The number and names of the rows in the Descriptions dataset
array must match the number and names of the columns in the Values
dataset array.

3-15

3 Microarray Analysis

The following illustrates a dataset array containing the measured value of
each variable per sample or feature:

Gender Age Type Strain Source
A 'Male' 8 'Wild type' '129S6/SvEvTac' 'amygdala'
B 'Male' 8 'Wild type' '129S6/SvEvTac' 'amygdala'
C 'Male' 8 'Wild type' '129S6/SvEvTac' 'amygdala'
D 'Male' 8 'Wild type' 'A/J ' 'amygdala'
E 'Male' 8 'Wild type' 'A/J ' 'amygdala'
F 'Male' 8 'Wild type' 'C57BL/6J ' 'amygdala'

The following illustrates a dataset array containing a list of the variable
names and their descriptions:

VariableDescription
id 'Sample identifier'
Gender 'Gender of the mouse in study'
Age 'The number of weeks since mouse birth'
Type 'Genetic characters'
Strain 'The mouse strain'
Source 'The tissue source for RNA collection'

A MetaData object lets you store, manage, and subset the metadata from a
microarray experiment. A MetaData object includes properties and methods
that let you access, retrieve, and change metadata from a microarray
experiment. These properties and methods are useful to view and analyze the
metadata. For a list of the properties and methods, see MetaData class

Constructing MetaData Objects

Constructing a MetaData Object from Two dataset Arrays

1 Import the bioma.data package so that the MetaData constructor function
is available.

import bioma.data.*

2 Load some sample data, which includes Fisher’s iris data of 5 measurements
on a sample of 150 irises.

3-16

Representing Sample and Feature Metadata in MetaData Objects

load fisheriris

3 Create a dataset array from some of Fisher’s iris data. The dataset
array will contain 750 measured values, one for each of 150 samples (iris
replicates) at five variables (species, SL, SW, PL, PW). In this dataset array,
the rows correspond to samples, and the columns correspond to variables.

irisValues = dataset({nominal(species),'species'}, ...
{meas, 'SL', 'SW', 'PL', 'PW'});

4 Create another dataset array containing a list of the variable names
and their descriptions. This dataset array will contain five rows, each
corresponding to the five variables: species, SL, SW, PL, and PW. The
first column will contain the variable name. The second column will have
a column header of VariableDescription and contain a description of
the variable.

% Create 5-by-1 cell array of description text for the variables
varDesc = {'Iris species', 'Sepal Length', 'Sepal Width', ...

'Petal Length', 'Petal Width'}';
% Create the dataset array from the variable descriptions
irisVarDesc = dataset(varDesc, ...

'ObsNames', {'species','SL','SW','PL','PW'}, ...
'VarNames', {'VariableDescription'})

irisVarDesc =

VariableDescription
species 'Iris species'
SL 'Sepal Length'
SW 'Sepal Width'
PL 'Petal Length'
PW 'Petal Width'

5 Create a MetaData object from the two dataset arrays.

MDObj1 = MetaData(irisValues, irisVarDesc);

3-17

3 Microarray Analysis

Constructing a MetaData Object from a Text File

1 Import the bioma.datapackage so that the MetaData constructor function
is available.

import bioma.data.*

2 View the mouseSampleData.txt file included with the Bioinformatics
Toolbox software.

Note that this text file contains two tables. One table contains 130
measured values, one for each of 26 samples (A through Z) at five variables
(Gender, Age, Type, Strain, and Source). In this table, the rows correspond
to samples, and the columns correspond to variables. The second table has
lines prefaced by the # symbol. It contains five rows, each corresponding to
the five variables: Gender, Age, Type, Strain, and Source. The first column
contains the variable name. The second column has a column header of
VariableDescription and contains a description of the variable.

id: Sample identifier
Gender: Gender of the mouse in study
Age: The number of weeks since mouse birth
Type: Genetic characters
Strain: The mouse strain
Source: The tissue source for RNA collection
ID Gender Age Type Strain Source
A Male 8 Wild type 129S6/SvEvTac amygdala
B Male 8 Wild type 129S6/SvEvTac amygdala
C Male 8 Wild type 129S6/SvEvTac amygdala
D Male 8 Wild type A/J amygdala
E Male 8 Wild type A/J amygdala
F Male 8 Wild type C57BL/6J amygdala
G Male 8 Wild type C57BL/6J amygdala
H Male 8 Wild type 129S6/SvEvTac cingulate cortex
I Male 8 Wild type 129S6/SvEvTac cingulate cortex
J Male 8 Wild type A/J cingulate cortex
K Male 8 Wild type A/J cingulate cortex
L Male 8 Wild type A/J cingulate cortex
M Male 8 Wild type C57BL/6J cingulate cortex
N Male 8 Wild type C57BL/6J cingulate cortex

3-18

Representing Sample and Feature Metadata in MetaData Objects

O Male 8 Wild type 129S6/SvEvTac hippocampus
P Male 8 Wild type 129S6/SvEvTac hippocampus
Q Male 8 Wild type A/J hippocampus
R Male 8 Wild type A/J hippocampus
S Male 8 Wild type C57BL/6J hippocampus
T Male 8 Wild type C57BL/6J4 hippocampus
U Male 8 Wild type 129S6/SvEvTac hypothalamus
V Male 8 Wild type 129S6/SvEvTac hypothalamus
W Male 8 Wild type A/J hypothalamus
X Male 8 Wild type A/J hypothalamus
Y Male 8 Wild type C57BL/6J hypothalamus
Z Male 8 Wild type C57BL/6J hypothalamus

3 Create a MetaData object from the metadata in the mouseSampleData.txt
file.

MDObj2 = MetaData('File', 'mouseSampleData.txt', 'VarDescChar', '#')

Sample Names:

A, B, ...,Z (26 total)

Variable Names and Meta Information:

VariableDescription

Gender ' Gender of the mouse in study'

Age ' The number of weeks since mouse birth'

Type ' Genetic characters'

Strain ' The mouse strain'

Source ' The tissue source for RNA collection'

For complete information on constructing MetaData objects, see MetaData
class.

Using Properties of a MetaData Object
To access properties of a MetaData object, use the following syntax:

objectname.propertyname

For example, to determine the number of variables in a MetaData object:

MDObj2.NVariables

3-19

3 Microarray Analysis

ans =

5

To set properties of a MetaData object, use the following syntax:

objectname.propertyname = propertyvalue

For example, to set the Description property of a MetaData object:

MDObj1.Description = 'This is my MetaData object for my sample metadata'

Note Property names are case sensitive. For a list and description of all
properties of a MetaData object, see MetaData class.

Using Methods of a MetaData Object
To use methods of a MetaData object, use either of the following syntaxes:

objectname.methodname

or

methodname(objectname)

For example, to access the dataset array in a MetaData object that contains
the variable values:

MDObj2.variableValues;

To access the dataset array of a MetaData object that contains the variable
descriptions:

variableDesc(MDObj2)

ans =

VariableDescription
Gender ' Gender of the mouse in study'
Age ' The number of weeks since mouse birth'

3-20

Representing Sample and Feature Metadata in MetaData Objects

Type ' Genetic characters'
Strain ' The mouse strain'
Source ' The tissue source for RNA collection'

Note For a complete list of methods of a MetaData object, see MetaData
class.

3-21

3 Microarray Analysis

Representing Experiment Information in a MIAME Object

In this section...

“Overview of MIAME Objects” on page 3-22

“Constructing MIAME Objects” on page 3-22

“Using Properties of a MIAME Object” on page 3-25

“Using Methods of a MIAME Object” on page 3-25

Overview of MIAME Objects
You can store information about experimental methods and conditions from
a microarray gene expression experiment in a MIAME object. It loosely
follows the Minimum Information About a Microarray Experiment (MIAME)
specification. It can include information about:

• Experiment design

• Microarrays used

• Samples used

• Sample preparation and labeling

• Hybridization procedures and parameters

• Normalization controls

• Preprocessing information

• Data processing specifications

A MIAME object includes properties and methods that let you access, retrieve,
and change experiment information related to a microarray experiment.
These properties and methods are useful to view and analyze the information.
For a list of the properties and methods, see MIAME class.

Constructing MIAME Objects
For complete information on constructing MIAME objects, see MIAME class.

3-22

Representing Experiment Information in a MIAME Object

Constructing a MIAME Object from a GEO Structure

1 Import the bioma.data package so that the MIAME constructor function
is available.

import bioma.data.*

2 Use the getgeodata function to return a MATLAB structure containing
Gene Expression Omnibus (GEO) Series data related to accession number
GSE4616.

geoStruct = getgeodata('GSE4616')

geoStruct =

Header: [1x1 struct]
Data: [12488x12 bioma.data.DataMatrix]

3 Use the MIAME constructor function to create a MIAME object from the
structure.

MIAMEObj1 = MIAME(geoStruct);

4 Display information about the MIAME object, MIAMEObj.

MIAMEObj1

MIAMEObj1 =

Experiment Description:

Author name: Mika,,Silvennoinen

Riikka,,Kivelˆ⁄

Maarit,,Lehti

Anna-Maria,,Touvras

Jyrki,,Komulainen

Veikko,,Vihko

Heikki,,Kainulainen

Laboratory: LIKES - Research Center

Contact information: Mika,,Silvennoinen

URL:

PubMedIDs: 17003243

3-23

3 Microarray Analysis

Abstract: A 90 word abstract is available. Use the Abstract property.

Experiment Design: A 234 word summary is available. Use the ExptDesign property.

Other notes:

[1x80 char]

Constructing a MIAME Object from Properties

1 Import the bioma.data package so that theMIAME constructor function
is available.

import bioma.data.*

2 Use the MIAME constructor function to create a MIAME object using
individual properties.

MIAMEObj2 = MIAME('investigator', 'Jane Researcher',...

'lab', 'One Bioinformatics Laboratory',...

'contact', 'jresearcher@lab.not.exist',...

'url', 'www.lab.not.exist',...

'title', 'Normal vs. Diseased Experiment',...

'abstract', 'Example of using expression data',...

'other', {'Notes:Created from a text file.'});

3 Display information about the MIAME object, MIAMEObj2.

MIAMEObj2

MIAMEObj2 =

Experiment Description:

Author name: Jane Researcher

Laboratory: One Bioinformatics Laboratory

Contact information: jresearcher@lab.not.exist

URL: www.lab.not.exist

PubMedIDs:

Abstract: A 4 word abstract is available. Use the Abstract property.

No experiment design summary available.

Other notes:

'Notes:Created from a text file.'

3-24

Representing Experiment Information in a MIAME Object

Using Properties of a MIAME Object
To access properties of a MIAME object, use the following syntax:

objectname.propertyname

For example, to retrieve the PubMed identifier of publications related to a
MIAME object:

MIAMEObj1.PubMedID

ans =

17003243

To set properties of a MIAME object, use the following syntax:

objectname.propertyname = propertyvalue

For example, to set the Laboratory property of a MIAME object:

MIAMEObj1.Laboratory = 'XYZ Lab'

Note Property names are case sensitive. For a list and description of all
properties of a MIAME object, see MIAME class.

Using Methods of a MIAME Object
To use methods of a MIAME object, use either of the following syntaxes:

objectname.methodname

or

methodname(objectname)

For example, to determine if a MIAME object is empty:

MIAMEObj1.isempty

ans =

3-25

3 Microarray Analysis

0

Note For a complete list of methods of a MIAME object, see MIAME class.

3-26

Representing All Data and Information in an ExpressionSet Object

Representing All Data and Information in an ExpressionSet
Object

In this section...

“Overview of ExpressionSet Objects” on page 3-27

“Constructing ExpressionSet Objects” on page 3-29

“Using Properties of an ExpressionSet Object” on page 3-30

“Using Methods of an ExpressionSet Object” on page 3-30

Overview of ExpressionSet Objects
You can store all microarray experiment data and information in one object
by assembling the following into an ExpressionSet object:

• One ExptData object containing expression values from a microarray
experiment in one or more DataMatrix objects

• One MetaData object containing sample metadata in two dataset arrays

• One MetaData object containing feature metadata in two dataset arrays

• One MIAME object containing experiment descriptions

The following graphic illustrates a typical ExpressionSet object and its
component objects.

3-27

3 Microarray Analysis

3-28

Representing All Data and Information in an ExpressionSet Object

Each element (DataMatrix object) in the ExpressionSet object has an element
name. Also, there is always one DataMatrix object whose element name is
Expressions.

An ExpressionSet object lets you store, manage, and subset the data from a
microarray gene expression experiment. An ExpressionSet object includes
properties and methods that let you access, retrieve, and change data,
metadata, and other information about the microarray experiment. These
properties and methods are useful to view and analyze the data. For a list of
the properties and methods, see ExpressionSet class.

Constructing ExpressionSet Objects

Note The following procedure assumes you have executed the example code
in the previous sections:

• “Representing Expression Data Values in ExptData Objects” on page 3-11

• “Representing Sample and Feature Metadata in MetaData Objects” on
page 3-15

• “Representing Experiment Information in a MIAME Object” on page 3-22

1 Import the bioma package so that the ExpresssionSet constructor function
is available.

import bioma.*

2 Construct an ExpressionSet object from EDObj, an ExptData object, MDObj2,
a MetaData object containing sample variable information, and MIAMEObj,
a MIAME object.

ESObj = ExpressionSet(EDObj, 'SData', MDObj2, 'EInfo', MIAMEObj1);

3 Display information about the ExpressionSet object, ESObj.

ESObj

3-29

3 Microarray Analysis

ExpressionSet
Experiment Data: 500 features, 26 samples

Element names: Expressions
Sample Data:

Sample names: A, B, ...,Z (26 total)
Sample variable names and meta information:

Gender: Gender of the mouse in study
Age: The number of weeks since mouse birth
Type: Genetic characters
Strain: The mouse strain
Source: The tissue source for RNA collection

Feature Data: none
Experiment Information: use 'exptInfo(obj)'

For complete information on constructing ExpressionSet objects, see
ExpressionSet class.

Using Properties of an ExpressionSet Object
To access properties of an ExpressionSet object, use the following syntax:

objectname.propertyname

For example, to determine the number of samples in an ExpressionSet object:

ESObj.NSamples

ans =

26

Note Property names are case sensitive. For a list and description of all
properties of an ExpressionSet object, see ExpressionSet class.

Using Methods of an ExpressionSet Object
To use methods of an ExpressionSet object, use either of the following
syntaxes:

3-30

Representing All Data and Information in an ExpressionSet Object

objectname.methodname

or

methodname(objectname)

For example, to retrieve the sample variable names from an ExpressionSet
object:

ESObj.sampleVarNames

ans =

'Gender' 'Age' 'Type' 'Strain' 'Source'

To retrieve the experiment information contained in an ExpressionSet object:

exptInfo(ESObj)

ans =

Experiment description

Author name: Mika,,Silvennoinen

Riikka,,Kivelˆ⁄

Maarit,,Lehti

Anna-Maria,,Touvras

Jyrki,,Komulainen

Veikko,,Vihko

Heikki,,Kainulainen

Laboratory: XYZ Lab

Contact information: Mika,,Silvennoinen

URL:

PubMedIDs: 17003243

Abstract: A 90 word abstract is available Use the Abstract property.

Experiment Design: A 234 word summary is available Use the ExptDesign property.

Other notes:

[1x80 char]

3-31

3 Microarray Analysis

Note For a complete list of methods of an ExpressionSet object, see
ExpressionSet class.

3-32

Example: Visualizing Microarray Data

Example: Visualizing Microarray Data

In this section...

“Overview of the Mouse Example” on page 3-33

“Exploring the Microarray Data Set” on page 3-34

“Spatial Images of Microarray Data” on page 3-36

“Statistics of the Microarrays” on page 3-46

“Scatter Plots of Microarray Data” on page 3-48

Overview of the Mouse Example
This example looks at the various ways to visualize microarray data. The
data comes from a pharmacological model of Parkinson’s disease (PD) using
a mouse brain. The microarray data for this example is from Brown, V.M.,
Ossadtchi, A., Khan, A.H., Yee, S., Lacan, G., Melega, W.P., Cherry, S.R.,
Leahy, R.M., and Smith, D.J.; "Multiplex three dimensional brain gene
expression mapping in a mouse model of Parkinson’s disease"; Genome
Research 12(6): 868-884 (2002).

The microarray data used in this example is available in a Web supplement
to the paper by Brown et al. and in the file mouse_a1pd.gpr included with
the Bioinformatics Toolbox software.

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/

The microarray data is also available on the Gene Expression Omnibus Web
site at

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

The GenePix GPR-formatted file mouse_a1pd.gpr contains the data for one
of the microarrays used in the study. This is data from voxel A1 of the brain
of a mouse in which a pharmacological model of Parkinson’s disease (PD)
was induced using methamphetamine. The voxel sample was labeled with
Cy3 (green) and the control, RNA from a total (not voxelated) normal mouse
brain, was labeled with Cy5 (red). GPR formatted files provide a large amount
of information about the array, including the mean, median, and standard

3-33

http://labs.pharmacology.ucla.edu/smithlab/genome_multiplex/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30

3 Microarray Analysis

deviation of the foreground and background intensities of each spot at the
635 nm wavelength (the red, Cy5 channel) and the 532 nm wavelength (the
green, Cy3 channel).

Exploring the Microarray Data Set
This procedure illustrates how to import data from the Web into the MATLAB
environment, using data from a study about gene expression in mouse brains
as an example. See “Overview of the Mouse Example” on page 3-33.

1 Read data from a file into a MATLAB structure. For example, in the
MATLAB Command Window, type

pd = gprread('mouse_a1pd.gpr')

Information about the structure displays in the MATLAB Command
Window:

pd =
Header: [1x1 struct]

Data: [9504x38 double]
Blocks: [9504x1 double]

Columns: [9504x1 double]
Rows: [9504x1 double]

Names: {9504x1 cell}
IDs: {9504x1 cell}

ColumnNames: {38x1 cell}
Indices: [132x72 double]

Shape: [1x1 struct]

2 Access the fields of a structure using StructureName.FieldName. For
example, you can access the field ColumnNames of the structure pd by typing

pd.ColumnNames

The column names are shown below.

ans =
'X'
'Y'
'Dia.'

3-34

Example: Visualizing Microarray Data

'F635 Median'
'F635 Mean'
'F635 SD'
'B635 Median'
'B635 Mean'
'B635 SD'
'% > B635+1SD'
'% > B635+2SD'
'F635 % Sat.'
'F532 Median'
'F532 Mean'
'F532 SD'
'B532 Median'
'B532 Mean'
'B532 SD'
'% > B532+1SD'
'% > B532+2SD'
'F532 % Sat.'
'Ratio of Medians'
'Ratio of Means'
'Median of Ratios'
'Mean of Ratios'
'Ratios SD'
'Rgn Ratio'
'Rgn R†'
'F Pixels'
'B Pixels'
'Sum of Medians'
'Sum of Means'
'Log Ratio'
'F635 Median - B635'
'F532 Median - B532'
'F635 Mean - B635'
'F532 Mean - B532'
'Flags'

3 Access the names of the genes. For example, to list the first 20 gene names,
type

pd.Names(1:20)

3-35

3 Microarray Analysis

A list of the first 20 gene names is displayed:

ans =
'AA467053'
'AA388323'
'AA387625'
'AA474342'
'Myo1b'
'AA473123'
'AA387579'
'AA387314'
'AA467571'

''
'Spop'
'AA547022'
'AI508784'
'AA413555'
'AA414733'

''
'Snta1'
'AI414419'
'W14393'
'W10596'

Spatial Images of Microarray Data
This procedure illustrates how to visualize microarray data by plotting image
maps. The function maimage can take a microarray data structure and create
a pseudocolor image of the data arranged in the same order as the spots on
the array. In other words, maimage plots a spatial plot of the microarray.

This procedure uses data from a study of gene expression in mouse brains.
For a list of field names in the MATLAB structure pd, see “Exploring the
Microarray Data Set” on page 3-34.

1 Plot the median values for the red channel. For example, to plot data from
the field F635 Median, type

figure
maimage(pd,'F635 Median')

3-36

Example: Visualizing Microarray Data

The MATLAB software plots an image showing the median pixel values for
the foreground of the red (Cy5) channel.

2 Plot the median values for the green channel. For example, to plot data
from the field F532 Median, type

figure
maimage(pd,'F532 Median')

3-37

3 Microarray Analysis

The MATLAB software plots an image showing the median pixel values of
the foreground of the green (Cy3) channel.

3 Plot the median values for the red background. The field B635 Median
shows the median values for the background of the red channel.

figure
maimage(pd,'B635 Median')

3-38

Example: Visualizing Microarray Data

The MATLAB software plots an image for the background of the red
channel. Notice the very high background levels down the right side of
the array.

4 Plot the medial values for the green background. The field B532 Median
shows the median values for the background of the green channel.

figure
maimage(pd,'B532 Median')

3-39

3 Microarray Analysis

The MATLAB software plots an image for the background of the green
channel.

5 The first array was for the Parkinson’s disease model mouse. Now read in
the data for the same brain voxel but for the untreated control mouse. In
this case, the voxel sample was labeled with Cy3 and the control, total
brain (not voxelated), was labeled with Cy5.

wt = gprread('mouse_a1wt.gpr')

The MATLAB software creates a structure and displays information about
the structure.

3-40

Example: Visualizing Microarray Data

wt =
Header: [1x1 struct]

Data: [9504x38 double]
Blocks: [9504x1 double]

Columns: [9504x1 double]
Rows: [9504x1 double]

Names: {9504x1 cell}
IDs: {9504x1 cell}

ColumnNames: {38x1 cell}
Indices: [132x72 double]

Shape: [1x1 struct]

6 Use the function maimage to show pseudocolor images of the foreground
and background. You can use the function subplot to put all the plots
onto one figure.

figure
subplot(2,2,1);
maimage(wt,'F635 Median')
subplot(2,2,2);
maimage(wt,'F532 Median')
subplot(2,2,3);
maimage(wt,'B635 Median')
subplot(2,2,4);
maimage(wt,'B532 Median')

3-41

3 Microarray Analysis

The MATLAB software plots the images.

7 If you look at the scale for the background images, you will notice that the
background levels are much higher than those for the PD mouse and there
appears to be something nonrandom affecting the background of the Cy3
channel of this slide. Changing the colormap can sometimes provide more
insight into what is going on in pseudocolor plots. For more control over the
color, try the colormapeditor function.

colormap hot

3-42

Example: Visualizing Microarray Data

The MATLAB software plots the images.

8 The function maimage is a simple way to quickly create pseudocolor images
of microarray data. However if you want more control over plotting, it is
easy to create your own plots using the function imagesc.

First find the column number for the field of interest.

b532MedCol = find(strcmp(wt.ColumnNames,'B532 Median'))

The MATLAB software displays:

b532MedCol =
16

9 Extract that column from the field Data.

b532Data = wt.Data(:,b532MedCol);

3-43

3 Microarray Analysis

10 Use the field Indices to index into the Data.

figure
subplot(1,2,1);
imagesc(b532Data(wt.Indices))
axis image
colorbar
title('B532 Median')

The MATLAB software plots the image.

3-44

Example: Visualizing Microarray Data

11 Bound the intensities of the background plot to give more contrast in the
image.

maskedData = b532Data;
maskedData(b532Data<500) = 500;
maskedData(b532Data>2000) = 2000;

subplot(1,2,2);
imagesc(maskedData(wt.Indices))
axis image
colorbar
title('Enhanced B532 Median')

The MATLAB software plots the images.

3-45

3 Microarray Analysis

Statistics of the Microarrays
This procedure illustrates how to visualize distributions in microarray data.
You can use the function maboxplot to look at the distribution of data in
each of the blocks.

1 In the MATLAB Command Window, type

figure

subplot(2,1,1)

maboxplot(pd,'F532 Median','title','Parkinson''s Disease Model Mouse')

subplot(2,1,2)

maboxplot(pd,'B532 Median','title','Parkinson''s Disease Model Mouse')

figure

subplot(2,1,1)

maboxplot(wt,'F532 Median','title','Untreated Mouse')

subplot(2,1,2)

maboxplot(wt,'B532 Median','title','Untreated Mouse')

The MATLAB software plots the images.

3-46

Example: Visualizing Microarray Data

3-47

3 Microarray Analysis

2 Compare the plots.

From the box plots you can clearly see the spatial effects in the background
intensities. Blocks numbers 1, 3, 5, and 7 are on the left side of the
arrays, and numbers 2, 4, 6, and 8 are on the right side. The data must be
normalized to remove this spatial bias.

Scatter Plots of Microarray Data
This procedure illustrates how to visualize expression levels in microarray
data. There are two columns in the microarray data structure labeled 'F635
Median - B635' and 'F532 Median - B532'. These columns are the
differences between the median foreground and the median background for
the 635 nm channel and 532 nm channel respectively. These give a measure of
the actual expression levels, although since the data must first be normalized
to remove spatial bias in the background, you should be careful about using
these values without further normalization. However, in this example no
normalization is performed.

3-48

Example: Visualizing Microarray Data

1 Rather than working with data in a larger structure, it is often easier to
extract the column numbers and data into separate variables.

cy5DataCol = find(strcmp(wt.ColumnNames,'F635 Median - B635'))
cy3DataCol = find(strcmp(wt.ColumnNames,'F532 Median - B532'))
cy5Data = pd.Data(:,cy5DataCol);
cy3Data = pd.Data(:,cy3DataCol);

The MATLAB software displays:

cy5DataCol =
34

cy3DataCol =
35

2 A simple way to compare the two channels is with a loglog plot. The
function maloglog is used to do this. Points that are above the diagonal in
this plot correspond to genes that have higher expression levels in the A1
voxel than in the brain as a whole.

figure
maloglog(cy5Data,cy3Data)
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

The MATLAB software displays the following messages and plots the
images.

Warning: Zero values are ignored
(Type "warning off Bioinfo:MaloglogZeroValues" to suppress
this warning.)

Warning: Negative values are ignored.
(Type "warning off Bioinfo:MaloglogNegativeValues" to suppress
this warning.)

3-49

3 Microarray Analysis

Notice that this function gives some warnings about negative and zero
elements. This is because some of the values in the 'F635 Median - B635'
and 'F532 Median - B532' columns are zero or even less than zero. Spots
where this happened might be bad spots or spots that failed to hybridize.
Points with positive, but very small, differences between foreground and
background should also be considered to be bad spots.

3 Disable the display of warnings by using the warning command. Although
warnings can be distracting, it is good practice to investigate why the
warnings occurred rather than simply to ignore them. There might be some
systematic reason why they are bad.

warnState = warning; % First save the current warning
state.

% Now turn off the two warnings.
warning('off','Bioinfo:MaloglogZeroValues');
warning('off','Bioinfo:MaloglogNegativeValues');

3-50

Example: Visualizing Microarray Data

figure
maloglog(cy5Data,cy3Data) % Create the loglog plot
warning(warnState); % Reset the warning state.
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

The MATLAB software plots the image.

4 An alternative to simply ignoring or disabling the warnings is to remove
the bad spots from the data set. You can do this by finding points where
either the red or green channel has values less than or equal to a threshold
value. For example, use a threshold value of 10.

threshold = 10;
badPoints = (cy5Data <= threshold) | (cy3Data <= threshold);

3-51

3 Microarray Analysis

The MATLAB software plots the image.

5 You can then remove these points and redraw the loglog plot.

cy5Data(badPoints) = []; cy3Data(badPoints) = [];
figure
maloglog(cy5Data,cy3Data)
xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

3-52

Example: Visualizing Microarray Data

The MATLAB software plots the image.

This plot shows the distribution of points but does not give any indication
about which genes correspond to which points.

6 Add gene labels to the plot. Because some of the data points have
been removed, the corresponding gene IDs must also be removed from
the data set before you can use them. The simplest way to do that is
wt.IDs(~badPoints).

maloglog(cy5Data,cy3Data,'labels',wt.IDs(~badPoints),...
'factorlines',2)

xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

3-53

3 Microarray Analysis

The MATLAB software plots the image.

7 Try using the mouse to click some of the outlier points.

You will see the gene ID associated with the point. Most of the outliers are
below the y = x line. In fact, most of the points are below this line. Ideally
the points should be evenly distributed on either side of this line.

8 Normalize the points to evenly distribute them on either side of the line.
Use the function mameannorm to perform global mean normalization.

normcy5 = mameannorm(cy5Data);
normcy3 = mameannorm(cy3Data);

If you plot the normalized data you will see that the points are more evenly
distributed about the y = x line.

figure

3-54

Example: Visualizing Microarray Data

maloglog(normcy5,normcy3,'labels',wt.IDs(~badPoints),...
'factorlines',2)

xlabel('F635 Median - B635 (Control)');
ylabel('F532 Median - B532 (Voxel A1)');

The MATLAB software plots the image.

9 The function mairplot is used to create an Intensity vs. Ratio plot for the
normalized data. This function works in the same way as the function
maloglog.

figure
mairplot(normcy5,normcy3,'labels',wt.IDs(~badPoints),...

'factorlines',2)

3-55

3 Microarray Analysis

The MATLAB software plots the image.

10 You can click the points in this plot to see the name of the gene associated
with the plot.

3-56

Example: Analyzing Gene Expression Profiles

Example: Analyzing Gene Expression Profiles

In this section...

“Overview of the Yeast Example” on page 3-57

“Exploring the Data Set” on page 3-57

“Filtering Genes” on page 3-61

“Clustering Genes” on page 3-64

“Principal Component Analysis” on page 3-68

Overview of the Yeast Example
This example demonstrates a number of ways to look for patterns in gene
expression profiles, using gene expression data from yeast shifting from
fermentation to respiration.

The microarray data for this example is from DeRisi, J.L., Iyer, V.R., and
Brown, P.O. (Oct 24, 1997). Exploring the metabolic and genetic control of
gene expression on a genomic scale. Science, 278 (5338), 680–686. PMID:
9381177.

The authors used DNA microarrays to study temporal gene expression of
almost all genes in Saccharomyces cerevisiae during the metabolic shift from
fermentation to respiration. Expression levels were measured at seven time
points during the diauxic shift. The full data set can be downloaded from the
Gene Expression Omnibus Web site at:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

Exploring the Data Set
This procedure illustrates how to import data from the Web into the MATLAB
environment. The data for this procedure is available in the MAT-file
yeastdata.mat. This file contains the VALUE data or LOG_RAT2N_MEAN,
or log2 of ratio of CH2DN_MEAN and CH1DN_MEAN from the seven time
steps in the experiment, the names of the genes, and an array of the times at
which the expression levels were measured.

1 Load data into the MATLAB environment.

3-57

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28

3 Microarray Analysis

load yeastdata.mat

2 Get the size of the data by typing

numel(genes)

The number of genes in the data set displays in the MATLAB Command
Window. The MATLAB variable genes is a cell array of the gene names.

ans =
6400

3 Access the entries using cell array indexing.

genes{15}

This displays the 15th row of the variable yeastvalues, which contains
expression levels for the open reading frame (ORF) YAL054C.

ans =
YAL054C

4 Use the function web to access information about this ORF in the
Saccharomyces Genome Database (SGD).

url = sprintf(...
'http://genome-www4.stanford.edu/cgi-bin/SGD/...
locus.pl?locus=%s',...

genes{15});
web(url);

5 A simple plot can be used to show the expression profile for this ORF.

plot(times, yeastvalues(15,:))
xlabel('Time (Hours)');
ylabel('Log2 Relative Expression Level');

3-58

Example: Analyzing Gene Expression Profiles

The MATLAB software plots the figure. The values are log2 ratios.

6 Plot the actual values.

plot(times, 2.^yeastvalues(15,:))
xlabel('Time (Hours)');
ylabel('Relative Expression Level');

3-59

3 Microarray Analysis

The MATLAB software plots the figure. The gene associated with this
ORF, ACS1, appears to be strongly up-regulated during the diauxic shift.

7 Compare other genes by plotting multiple lines on the same figure.

hold on
plot(times, 2.^yeastvalues(16:26,:)')
xlabel('Time (Hours)');
ylabel('Relative Expression Level');
title('Profile Expression Levels');

3-60

Example: Analyzing Gene Expression Profiles

The MATLAB software plots the image.

Filtering Genes
This procedure illustrates how to filter the data by removing genes that are
not expressed or do not change. The data set is quite large and a lot of the
information corresponds to genes that do not show any interesting changes
during the experiment. To make it easier to find the interesting genes, reduce
the size of the data set by removing genes with expression profiles that do not
show anything of interest. There are 6400 expression profiles. You can use
a number of techniques to reduce the number of expression profiles to some
subset that contains the most significant genes.

1 If you look through the gene list you will see several spots marked as
'EMPTY'. These are empty spots on the array, and while they might have
data associated with them, for the purposes of this example, you can

3-61

3 Microarray Analysis

consider these points to be noise. These points can be found using the
strcmp function and removed from the data set with indexing commands.

emptySpots = strcmp('EMPTY',genes);
yeastvalues(emptySpots,:) = [];
genes(emptySpots) = [];
numel(genes)

The MATLAB software displays:

ans =
6314

In the yeastvalues data you will also see several places where the
expression level is marked as NaN. This indicates that no data was collected
for this spot at the particular time step. One approach to dealing with
these missing values would be to impute them using the mean or median of
data for the particular gene over time. This example uses a less rigorous
approach of simply throwing away the data for any genes where one or
more expression levels were not measured.

2 Use the isnan function to identify the genes with missing data and then
use indexing commands to remove the genes.

nanIndices = any(isnan(yeastvalues),2);
yeastvalues(nanIndices,:) = [];
genes(nanIndices) = [];
numel(genes)

The MATLAB software displays:

ans =
6276

If you were to plot the expression profiles of all the remaining profiles,
you would see that most profiles are flat and not significantly different
from the others. This flat data is obviously of use as it indicates that the
genes associated with these profiles are not significantly affected by the
diauxic shift. However, in this example, you are interested in the genes
with large changes in expression accompanying the diauxic shift. You can
use filtering functions in the toolbox to remove genes with various types

3-62

Example: Analyzing Gene Expression Profiles

of profiles that do not provide useful information about genes affected by
the metabolic change.

3 Use the function genevarfilter to filter out genes with small variance
over time. The function returns a logical array of the same size as the
variable genes with ones corresponding to rows of yeastvalues with
variance greater than the 10th percentile and zeros corresponding to those
below the threshold.

mask = genevarfilter(yeastvalues);
% Use the mask as an index into the values to remove the
% filtered genes.
yeastvalues = yeastvalues(mask,:);
genes = genes(mask);
numel(genes)

The MATLAB software displays:

ans =
5648

4 The function genelowvalfilter removes genes that have very low
absolute expression values. Note that the gene filter functions can also
automatically calculate the filtered data and names.

[mask, yeastvalues, genes] = genelowvalfilter(yeastvalues,genes,...
'absval',log2(4));

numel(genes)

The MATLAB software displays:

ans =
423

5 Use the function geneentropyfilter to remove genes whose profiles have
low entropy:

[mask, yeastvalues, genes] = geneentropyfilter(yeastvalues,genes,...
'prctile',15);

numel(genes)

3-63

3 Microarray Analysis

The MATLAB software displays:

ans = 310

Clustering Genes
Now that you have a manageable list of genes, you can look for relationships
between the profiles using some different clustering techniques from the
Statistics Toolbox software.

1 For hierarchical clustering, the function pdist calculates the pairwise
distances between profiles, and the function linkage creates the
hierarchical cluster tree.

corrDist = pdist(yeastvalues, 'corr');
clusterTree = linkage(corrDist, 'average');

2 The function cluster calculates the clusters based on either a cutoff
distance or a maximum number of clusters. In this case, the 'maxclust'
option is used to identify 16 distinct clusters.

clusters = cluster(clusterTree, 'maxclust', 16);

3 The profiles of the genes in these clusters can be plotted together using a
simple loop and the function subplot.

figure
for c = 1:16

subplot(4,4,c);
plot(times,yeastvalues((clusters == c),:)');
axis tight

end
suptitle('Hierarchical Clustering of Profiles');

The MATLAB software plots the images.

3-64

Example: Analyzing Gene Expression Profiles

4 The Statistics Toolbox software also has a K-means clustering function.
Again, 16 clusters are found, but because the algorithm is different these
are not necessarily the same clusters as those found by hierarchical
clustering.

[cidx, ctrs] = kmeans(yeastvalues, 16,...
'dist','corr',...
'rep',5,...
'disp','final');

figure
for c = 1:16

subplot(4,4,c);
plot(times,yeastvalues((cidx == c),:)');
axis tight

end
suptitle('K-Means Clustering of Profiles');

3-65

3 Microarray Analysis

The MATLAB software displays:

13 iterations, total sum of distances = 11.4042
14 iterations, total sum of distances = 8.62674
26 iterations, total sum of distances = 8.86066
22 iterations, total sum of distances = 9.77676
26 iterations, total sum of distances = 9.01035

5 Instead of plotting all of the profiles, you can plot just the centroids.

figure
for c = 1:16

subplot(4,4,c);
plot(times,ctrs(c,:)');
axis tight
axis off % turn off the axis

end
suptitle('K-Means Clustering of Profiles');

3-66

Example: Analyzing Gene Expression Profiles

The MATLAB software plots the figure:

6 You can use the function clustergram to create a heat map and
dendrogram from the output of the hierarchical clustering.

figure
clustergram(yeastvalues(:,2:end),'RowLabels',genes,...

'ColumnLabels',times(2:end))

3-67

3 Microarray Analysis

The MATLAB software plots the figure:

Principal Component Analysis
Principal-component analysis (PCA) is a useful technique you can use to
reduce the dimensionality of large data sets, such as those from microarray
analysis. You can also use PCA to find signals in noisy data.

1 Use the princomp function in the Statistics Toolbox software to calculate
the principal components of a data set.

[pc, zscores, pcvars] = princomp(yeastvalues)

The MATLAB software displays:

pc =

Columns 1 through 4

3-68

Example: Analyzing Gene Expression Profiles

-0.0245 -0.3033 -0.1710 -0.2831
0.0186 -0.5309 -0.3843 -0.5419
0.0713 -0.1970 0.2493 0.4042
0.2254 -0.2941 0.1667 0.1705
0.2950 -0.6422 0.1415 0.3358
0.6596 0.1788 0.5155 -0.5032
0.6490 0.2377 -0.6689 0.2601

Columns 5 through 7

-0.1155 0.4034 0.7887
-0.2384 -0.2903 -0.3679
-0.7452 -0.3657 0.2035
-0.2385 0.7520 -0.4283
0.5592 -0.2110 0.1032

-0.0194 -0.0961 0.0667
-0.0673 -0.0039 0.0521

2 You can use the function cumsum to see the cumulative sum of the variances.

cumsum(pcvars./sum(pcvars) * 100)

The MATLAB software displays:

ans =
78.3719
89.2140
93.4357
96.0831
98.3283
99.3203

100.0000

This shows that almost 90% of the variance is accounted for by the first
two principal components.

3 A scatter plot of the scores of the first two principal components shows that
there are two distinct regions. This is not unexpected, because the filtering

3-69

3 Microarray Analysis

process removed many of the genes with low variance or low information.
These genes would have appeared in the middle of the scatter plot.

figure
scatter(zscores(:,1),zscores(:,2));
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter Plot');

The MATLAB software plots the figure:

4 The gname function from the Statistics Toolbox software can be used to
identify genes on a scatter plot. You can select as many points as you like
on the scatter plot.

gname(genes);

When you have finished selecting points, press Enter.

5 An alternative way to create a scatter plot is with the gscatter function
from the Statistics Toolbox software. gscatter creates a grouped scatter

3-70

Example: Analyzing Gene Expression Profiles

plot where points from each group have a different color or marker. You
can use clusterdata, or any other clustering function, to group the points.

figure
pcclusters = clusterdata(zscores(:,1:2),6);
gscatter(zscores(:,1),zscores(:,2),pcclusters)
xlabel('First Principal Component');
ylabel('Second Principal Component');
title('Principal Component Scatter Plot with Colored Clusters');
gname(genes) % Press enter when you finish selecting genes.

The MATLAB software plots the figure:

3-71

3 Microarray Analysis

3-72

4

Phylogenetic Analysis

• “Overview of Phylogenetic Analysis” on page 4-2

• “Example: Building a Phylogenetic Tree” on page 4-3

• “Phylogenetic Tree Tool Reference” on page 4-16

4 Phylogenetic Analysis

Overview of Phylogenetic Analysis
Phylogenetic analysis is the process you use to determine the evolutionary
relationships between organisms. The results of an analysis can be drawn
in a hierarchical diagram called a cladogram or phylogram (phylogenetic
tree). The branches in a tree are based on the hypothesized evolutionary
relationships (phylogeny) between organisms. Each member in a branch, also
known as a monophyletic group, is assumed to be descended from a common
ancestor. Originally, phylogenetic trees were created using morphology, but
now, determining evolutionary relationships includes matching patterns in
nucleic acid and protein sequences.

4-2

Example: Building a Phylogenetic Tree

Example: Building a Phylogenetic Tree

In this section...

“Overview of the Primate Example” on page 4-3

“Searching NCBI for Phylogenetic Data” on page 4-5

“Creating a Phylogenetic Tree for Five Species” on page 4-6

“Creating a Phylogenetic Tree for Twelve Species” on page 4-9

“Exploring the Phylogenetic Tree” on page 4-11

Note For information on creating a phylogenetic tree with multiply aligned
sequences, see the phytree function.

Overview of the Primate Example
In this example, a phylogenetic tree is constructed from mitochondrial DNA
(mtDNA) sequences for the family Hominidae. This family includes gorillas,
chimpanzees, orangutans, and humans.

The following procedures demonstrate the phylogenetic analysis features
in the Bioinformatics Toolbox software. They are not intended to teach the
process of phylogenetic analysis, but to show you how to use MathWorks
products to create a phylogenetic tree from a set of nonaligned nucleotide
sequences.

The origin of modern humans is a heavily debated issue that scientists have
recently tackled by using mitochondrial DNA (mtDNA) sequences. One
hypothesis explains the limited genetic variation of human mtDNA in terms
of a recent common genetic ancestry, implying that all modern population
mtDNA originated from a single woman who lived in Africa less than 200,000
years ago.

Why Use Mitochondrial DNA Sequences for Phylogenetic
Study?
Mitochondrial DNA sequences, like the Y chromosome, do not recombine
and are inherited from the maternal parent. This lack of recombination

4-3

4 Phylogenetic Analysis

allows sequences to be traced through one genetic line and all polymorphisms
assumed to be caused by mutations.

Mitochondrial DNA in mammals has a faster mutation rate than nuclear
DNA sequences. This faster rate of mutation produces more variance between
sequences and is an advantage when studying closely related species. The
mitochondrial control region (Displacement or D-loop) is one of the fastest
mutating sequence regions in animal DNA.

Neanderthal DNA
The ability to isolate mitochondrial DNA (mtDNA) from palaeontological
samples has allowed genetic comparisons between extinct species and closely
related nonextinct species. The reasons for isolating mtDNA instead of
nuclear DNA in fossil samples have to do with the fact that:

• mtDNA, because it is circular, is more stable and degrades slower then
nuclear DNA.

• Each cell can contain a thousand copies of mtDNA and only a single copy
of nuclear DNA.

While there is still controversy as to whether Neanderthals are direct
ancestors of humans or evolved independently, the use of ancient genetic
sequences in phylogenetic analysis adds an interesting dimension to the
question of human ancestry.

References
Ovchinnikov I., et al. (2000). Molecular analysis of Neanderthal DNA from
the northern Caucasus. Nature 404(6777), 490–493.

Sajantila A., et al. (1995). Genes and languages in Europe: an analysis of
mitochondrial lineages. Genome Research 5 (1), 42–52.

Krings M., et al. (1997). Neanderthal DNA sequences and the origin of
modern humans. Cell 90 (1), 19–30.

Jensen-Seaman, M., Kidd K. (2001). Mitochondrial DNA variation and
biogeography of eastern gorillas. Molecular Ecology 10(9), 2241–2247.

4-4

Example: Building a Phylogenetic Tree

Searching NCBI for Phylogenetic Data
The NCBI taxonomy Web site includes phylogenetic and taxonomic
information from many sources. These sources include the published
literature, Web databases, and taxonomy experts. And while the NCBI
taxonomy database is not a phylogenetic or taxonomic authority, it can be
useful as a gateway to the NCBI biological sequence databases.

This procedure uses the family Hominidae (orangutans, chimpanzees,
gorillas, and humans) as a taxonomy example for searching the NCBI Web
site and locating mitochondrial D-loop sequences.

1 Use the MATLAB Help browser to search for data on the Web. In the
MATLAB Command Window, type

web('http://www.ncbi.nlm.nih.gov')

A separate browser window opens with the home page for the NCBI Web
site.

2 Search the NCBI Web site for information. For example, to search for the
human taxonomy, from the Search list, select Taxonomy, and in the for
box, enter hominidae.

The NCBI Web search returns a list of links to relevant pages.

4-5

4 Phylogenetic Analysis

3 Select the taxonomy link for the family Hominidae. A page with the
taxonomy for the family is shown.

Creating a Phylogenetic Tree for Five Species
Drawing a phylogenetic tree using sequence data is helpful when you are
trying to visualize the evolutionary relationships between species. The
sequences can be multiply aligned or a set of nonaligned sequences, you can
select a method for calculating pairwise distances between sequences, and

4-6

Example: Building a Phylogenetic Tree

you can select a method for calculating the hierarchical clustering distances
used to build a tree.

After locating the GenBank accession codes for the sequences you are
interested in studying, you can create a phylogenetic tree with the data. For
information on locating accession codes, see “Searching NCBI for Phylogenetic
Data” on page 4-5.

In the following example, you will use the Jukes-Cantor method to calculate
distances between sequences, and the Unweighted Pair Group Method
Average (UPGMA) method for linking the tree nodes.

1 Create a MATLAB structure with information about the sequences. This
step uses the accession codes for the mitochondrial D-loop sequences
isolated from different hominid species.

data = {'German_Neanderthal' 'AF011222';
'Russian_Neanderthal' 'AF254446';
'European_Human' 'X90314' ;
'Mountain_Gorilla_Rwanda' 'AF089820';
'Chimp_Troglodytes' 'AF176766';

};

2 Retrieve sequence data from the GenBank database and copy into the
MATLAB environment.

for ind = 1:5
seqs(ind).Header = data{ind,1};
seqs(ind).Sequence = getgenbank(data{ind,2},...

'sequenceonly', true);
end

3 Calculate pairwise distances and create a phytree object. For example,
compute the pairwise distances using the Jukes-Cantor distance method
and build a phylogenetic tree using the UPGMA linkage method. Since
the sequences are not prealigned, seqpdist pairwise aligns them before
computing the distances.

distances = seqpdist(seqs,'Method','Jukes-Cantor','Alphabet','DNA');
tree = seqlinkage(distances,'UPGMA',seqs)

4-7

4 Phylogenetic Analysis

The MATLAB software displays information about the phytree object.
The function seqpdist calculates the pairwise distances between pairs of
sequences while the function seqlinkage uses the distances to build a
hierarchical cluster tree. First, the most similar sequences are grouped
together, and then sequences are added to the tree in descending order
of similarity.

Phylogenetic tree object with 5 leaves (4 branches)

4 Draw a phylogenetic tree.

h = plot(tree,'orient','top');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',65)

The MATLAB software draws a phylogenetic tree in a Figure window. In
the figure below, the hypothesized evolutionary relationships between the
species is shown by the location of species on the branches. The horizontal
distances do not have any biological significance.

4-8

Example: Building a Phylogenetic Tree

Creating a Phylogenetic Tree for Twelve Species
Plotting a simple phylogenetic tree for five species seems to indicate a number
of monophyletic groups (see “Creating a Phylogenetic Tree for Five Species”
on page 4-6). After a preliminary analysis with five species, you can add more
species to your phylogenetic tree. Adding more species to the data set will
help you to confirm the observed monophyletic groups are valid.

1 Add more sequences to a MATLAB structure. For example, add mtDNA
D-loop sequences for other hominid species.

data2 = {'Puti_Orangutan' 'AF451972';
'Jari_Orangutan' 'AF451964';
'Western_Lowland_Gorilla' 'AY079510';
'Eastern_Lowland_Gorilla' 'AF050738';

4-9

4 Phylogenetic Analysis

'Chimp_Schweinfurthii' 'AF176722';
'Chimp_Vellerosus' 'AF315498';
'Chimp_Verus' 'AF176731';

};

2 Get additional sequence data from the GenBank database, and copy the
data into the next indices of a MATLAB structure.

for ind = 1:7
seqs(ind+5).Header = data2{ind,1};
seqs(ind+5).Sequence = getgenbank(data2{ind,2},...

'sequenceonly', true);
end

3 Calculate pairwise distances and the hierarchical linkage.

distances = seqpdist(seqs,'Method','Jukes-Cantor','Alpha','DNA');
tree = seqlinkage(distances,'UPGMA',seqs);

4 Draw a phylogenetic tree.

h = plot(tree,'orient','top');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',65)

The MATLAB software draws a phylogenetic tree in a Figure window. You
can see four main clades for humans, gorillas, chimpanzee, and orangutans.

4-10

Example: Building a Phylogenetic Tree

Exploring the Phylogenetic Tree
After you create a phylogenetic tree, you can explore the tree using the
MATLAB command line or the phytreetool GUI. This procedure uses the
tree created in “Creating a Phylogenetic Tree for Twelve Species” on page
4-9 as an example.

1 List the members of a tree.

names = get(tree,'LeafNames')

From the list, you can determine the indices for its members. For example,
the European Human leaf is the third entry.

names =

4-11

4 Phylogenetic Analysis

'German_Neanderthal'
'Russian_Neanderthal'
'European_Human'
'Chimp_Troglodytes'
'Chimp_Schweinfurthii'
'Chimp_Verus'
'Chimp_Vellerosus'
'Puti_Orangutan'
'Jari_Orangutan'
'Mountain_Gorilla_Rwanda'
'Eastern_Lowland_Gorilla'
'Western_Lowland_Gorilla'

2 Find the closest species to a selected species in a tree. For example, find
the species closest to the European human.

[h_all,h_leaves] = select(tree,'reference',3,...
'criteria','distance',...
'threshold',0.6);

h_all is a list of indices for the nodes within a patristic distance of 0.6 to
the European human leaf, while h_leaves is a list of indices for only the
leaf nodes within the same patristic distance.

A patristic distance is the path length between species calculated from
the hierarchical clustering distances. The path distance is not necessarily
the biological distance.

3 List the names of the closest species.

subtree_names = names(h_leaves)

The MATLAB software prints a list of species with a patristic distance to
the European human less than the specified distance. In this case, the
patristic distance threshold is less than 0.6.

subtree_names =

'German_Neanderthal'
'Russian_Neanderthal'

4-12

Example: Building a Phylogenetic Tree

'European_Human'
'Chimp_Schweinfurthii'
'Chimp_Verus'
'Chimp_Troglodytes'

4 Extract a subtree from the whole tree by removing unwanted leaves. For
example, prune the tree to species within 0.6 of the European human
species.

leaves_to_prune = ~h_leaves;
pruned_tree = prune(tree,leaves_to_prune)
h = plot(pruned_tree,'orient','top');
ylabel('Evolutionary distance')
set(h.terminalNodeLabels,'Rotation',65)

The MATLAB software returns information about the new subtree and
plots the pruned phylogenetic tree in a Figure window.

Phylogenetic tree object with 6 leaves (5 branches)

4-13

4 Phylogenetic Analysis

5 Explore, edit, and format a phylogenetic tree using an interactive GUI.

phytreetool(pruned_tree)

The Phylogenetic Tree Tool window opens and draws the tree.

4-14

Example: Building a Phylogenetic Tree

You can interactively change the appearance of the tree within the tool
window. For information on using this GUI, see “Phylogenetic Tree Tool
Reference” on page 4-16.

4-15

4 Phylogenetic Analysis

Phylogenetic Tree Tool Reference

In this section...

“Overview of the Phylogenetic Tree Tool” on page 4-16

“Opening the Phylogenetic Tree Tool” on page 4-16

“File Menu” on page 4-18

“Tools Menu” on page 4-31

“Window Menu” on page 4-40

“Help Menu” on page 4-40

Overview of the Phylogenetic Tree Tool
The Phylogenetic Tree Tool is an interactive graphical user interface (GUI)
that allows you to view, edit, format, and explore phylogenetic tree data. With
this GUI you can prune, reorder, rename branches, and explore distances.
You can also open or save Newick-formatted files. The following sections
give a description of menu commands and features for creating publishable
tree figures.

Opening the Phylogenetic Tree Tool
This section illustrates how to draw a phylogenetic tree from data in a phytree
object or a previously saved file.

The Phylogenetic Tree Tool can read data from Newick and ClustalW tree
formatted files.

This procedure uses the phylogenetic tree data stored in the file pf00002.tree
as an example. The data was retrieved from the protein family (PFAM) Web
database and saved to a file using the accession number PF00002 and the
function gethmmtree.

1 Create a phytree object. For example, to create a phytree object from tree
data in the file pf00002.tree, type

tr= phytreeread('pf00002.tree')

4-16

Phylogenetic Tree Tool Reference

The MATLAB software creates a phytree object.

Phylogenetic tree object with 33 leaves (32 branches)

2 Open the Phylogenetic Tree Tool and draw a phylogenetic tree.

phytreetool(tr)

The Phylogenetic Tree Tool window opens.

Alternately, if you do not give the phytreetool function an argument, the
Select Phylogenetic Tree dialog box opens. Select a Newick-formatted file
and then click Open.

4-17

4 Phylogenetic Analysis

3 Select a command from the menu or toolbar.

File Menu
The File menu includes the standard commands for opening and closing a
file, and it includes commands to use phytree object data from the MATLAB
Workspace. The File menu commands are shown below.

New Tool Command
Use the New Tool command to open tree data from a file into a second
Phylogenetic Tree Tool window.

1 From the File menu, select New Tool.

The Open A Phylogenetic Tree dialog box opens.

4-18

Phylogenetic Tree Tool Reference

2 Choose the source for a tree.

• MATLAB Workspace — Select the Import from Workspace options,
and then select a phytree object from the list.

• File — Select the Open phylogenetic tree file option, click the
Browse button, select a directory, select a file with the extension .tree,
and then click Open. The toolbox uses the file extension .tree for
Newick-formatted files, but you can use any Newick-formatted file with
any extension.

4-19

4 Phylogenetic Analysis

A second Phylogenetic Tree Tool window opens with tree data from the
selected file.

Open Command
Use the Open command to read tree data from a Newick-formatted file and
display that data in a Phylogenetic Tree Tool.

1 From the File menu, click Open.

The Select Phylogenetic Tree File dialog box opens.

2 Select a directory, select a Newick-formatted file, and then click Open. The
toolbox uses the file extension .tree for Newick-formatted files, but you
can use any Newick-formatted file with any extension.

The MATLAB software replaces the current tree data with data from the
selected file.

Import from Workspace Command
Use the Import from Workspace command to read tree data from a phytree
object in the MATLAB Workspace and display that data in a Phylogenetic
Tree Tool.

4-20

Phylogenetic Tree Tool Reference

1 From the File menu, select Import from Workspace.

The Get Phytree Object dialog box opens.

2 From the list, select a phytree object in the MATLAB Workspace.

3 Click the Import button.

The MATLAB software replaces the current tree data in the Phylogenetic
Tree Tool with data from the selected object.

Open Original in New Tool
There may be times when you make changes that you would like to undo.
Phytreetool does not have an undo command, but you can get back to the
original tree you started viewing with the Open Original in New Tool
command.

From the File menu, select Open Original in New Tool.

A new Phylogenetic Tree Tool window opens with the original tree.

Save As Command
After you create a phytree object or prune a tree from existing data, you can
save the resulting tree in a Newick-formatted file. The sequence data used to
create the phytree object is not saved with the tree.

4-21

4 Phylogenetic Analysis

1 From the File menu, select Save As.

The Save Phylogenetic tree as dialog box opens.

2 In the Filename box, enter the name of a file. The toolbox uses the file
extension .tree for Newick-formatted files, but you can use any file
extension.

3 Click Save.

phytreetool saves tree data without the deleted branches, and it saves
changes to branch and leaf names. Formatting changes such as branch
rotations, collapsed branches, and zoom settings are not saved in the file.

Export to New Tool Command
Because some of the Phylogenetic Tree Tool commands cannot be undone (for
example, the Prune command), you might want to make a copy of your tree
before trying a command. At other times, you might want to compare two
views of the same tree, and copying a tree to a new tool window allows you to
make changes to both tree views independently .

1 Select File > Export to New Tool, and then select either With Hidden
Nodes or Only Displayed.

A new Phylogenetic Tree Tool window opens with a copy of the tree.

2 Use the new figure to continue your analysis.

Export to Workspace Command
The Phylogenetic Tree Tool can open Newick-formatted files with tree data.
However, it does not create a phytree object in the MATLAB Workspace. If
you want to programmatically explore phylogenetic trees, you need to use the
Export to Workspace command.

1 Select File > Export to Workspace, and then select eitherWith Hidden
Nodes or Only Displayed.

The Export to Workspace dialog box opens.

4-22

Phylogenetic Tree Tool Reference

2 In the Workspace variable name box, enter the name for your
phylogenetic tree data. For example, enter MyTree.

3 Click OK.

The phytreetool creates a phytree object in the MATLAB Workspace.

Print to Figure Command
After you have explored the relationships between branches and leaves in
your tree, you can copy the tree to a MATLAB Figure window. Using a
Figure window lets you use all the features for annotating, changing font
characteristics, and getting your figure ready for publication. Also, from the
Figure window, you can save an image of the tree as it was displayed in the
Phylogenetic Tree Tool window.

1 From the File menu, select Print to Figure, and then select eitherWith
Hidden Nodes or Only Displayed.

The Publish Phylogenetic Tree to Figure dialog box opens.

4-23

4 Phylogenetic Analysis

2 Select one of the Rendering Types.

4-24

Phylogenetic Tree Tool Reference

Rendering Type Description

'square' (default)

4-25

4 Phylogenetic Analysis

Rendering Type Description

'angular'

4-26

Phylogenetic Tree Tool Reference

Rendering Type Description

'radial'

'equalangle'

4-27

4 Phylogenetic Analysis

Rendering Type Description

Tip This rendering type hides the significance of
the root node and emphasizes clusters, thereby
making it useful for visually assessing clusters
and detecting outliers.

'equaldaylight'

Tip This rendering type hides the significance of
the root node and emphasizes clusters, thereby
making it useful for visually assessing clusters
and detecting outliers.

3 Select the Display Labels you want on your figure. You can select from all
to none of the options.

• Branch Nodes— Display branch node names on the figure.

• Leaf Nodes — Display leaf node names on the figure.

• Terminal Nodes— Display terminal node names on the right border.

4-28

Phylogenetic Tree Tool Reference

4 Click the Print button.

A new Figure window opens with the characteristics you selected.

Page Setup Command
When you print from the Phylogenetic Tree Tool or a MATLAB Figure
window (with a tree published from the tool), you can specify setup options for
printing a tree.

1 From the File menu, select Page Setup.

The Page Setup - Phylogenetic Tree Tool dialog box opens, which you can
use to select page formatting options.

2 Select the page formatting options and values you want, and then click OK.

4-29

4 Phylogenetic Analysis

Print Setup Command
Use the Print Setup command with the Page Setup command to print a
MATLAB Figure window.

1 From the File menu, select Print Setup.

The Print Setup dialog box opens.

2 Select the printer and options you want, and then click OK.

Print Preview Command
Use the Print Preview command to check the formatting options you
selected with the Page Setup commend.

1 From the File menu, select Print Preview.

A window opens with a picture of your figure with the selected formatting
options.

4-30

Phylogenetic Tree Tool Reference

2 Click Print or Close.

Print Command
Use the Print command to make a copy of your phylogenetic tree after you
use the Page Setup command to select formatting options.

1 From the File menu, select Print.

The Print dialog box opens.

2 From the Name list, select a printer, and then click OK.

Tools Menu
Use the Tools menu to:

• Explore branch paths

• Rotate branches

• Find, rename, hide, and prune branches and leaves.

The Tools menu and toolbar contain most of the commands specific to trees
and phylogenetic analysis. Use these commands and modes to edit and format
your tree interactively. The Tools menu commands are:

4-31

4 Phylogenetic Analysis

Inspect Mode
Viewing a phylogenetic tree in the Phylogenetic Tree Tool window provides a
rough idea of how closely related two sequences are. However, to see exactly
how closely related two sequences are, measure the distance of the path
between them. Use the Inspect command to display and measure the path
between two sequences.

1 Select Tools > Inspect, or from the toolbar, click the Inspect Tool Mode

icon .

The Phylogenetic Tree Tool is set to inspect mode.

2 Click a branch or leaf node (selected node), and then hover your cursor over
another branch or leaf node (current node).

4-32

Phylogenetic Tree Tool Reference

The tool highlights the path between the two nodes and displays the path
length in the pop-up window. The path length is the patristic distance
calculated by the seqpdist function.

Collapse and Expand Branch Mode
Some trees have thousands of leaf and branch nodes. Displaying all the nodes
can create an unreadable tree diagram. By collapsing some branches, you can
better see the relationships between the remaining nodes.

1 Select Tools > Collapse/Expand, or from the toolbar, click the

Collapse/Expand Brand Mode icon .

The Phylogenetic Tree Tool is set to collapse/expand mode.

2 Point to a branch.

The paths, branch nodes, and leaf nodes below the selected branch appear
in gray, indicating you selected them to collapse (hide from view).

3 Click the branch node.

The tool hides the display of paths, branch nodes, and leaf nodes below the
selected branch. However, it does not remove the data.

4-33

4 Phylogenetic Analysis

4 To expand a collapsed branch, click it or select Tools > Reset View.

Tip After collapsing nodes, you can redraw the tree by selecting Tools >
Fit to Window.

Rotate Branch Mode
A phylogenetic tree is initially created by pairing the two most similar
sequences and then adding the remaining sequences in a decreasing order of
similarity. You can rotate branches to emphasize the direction of evolution.

1 Select Tools > Rotate Branch, or from the toolbar, click the Rotate

Branch Mode icon .

The Phylogenetic Tree Tool is set to rotate branch mode.

2 Point to a branch node.

3 Click the branch node.

4-34

Phylogenetic Tree Tool Reference

The branch and leaf nodes below the selected branch node rotate 180
degrees around the branch node.

4 To undo the rotation, simply click the branch node again.

Rename Leaf or Branch Mode
The Phylogenetic Tree Tool takes the node names from the phytree object and
creates numbered branch names starting with Branch 1. You can edit any
of the leaf or branch names.

1 Select Tools > Rename, or from the toolbar, click the Rename Leaf/Branch

Mode icon .

The Phylogenetic Tree Tool is set to rename mode.

2 Click a branch or leaf node.

A text box opens with the current name of the node.

3 In the text box, edit or enter a new name.

4 To accept your changes and close the text box, click outside of the text box.
To save your changes, select File > Save As.

Prune (Delete) Leaf or Branch Mode
Your tree can contain leaves that are far outside the phylogeny, or it can have
duplicate leaves that you want to remove.

4-35

4 Phylogenetic Analysis

1 Select Tools > Prune, or from the toolbar, click the Prune (delete)

Leaf/Branch Mode icon .

The Phylogenetic Tree Tool is set to prune mode.

2 Point to a branch or leaf node.

For a leaf node, the branch line connected to the leaf appears in gray. For a
branch node, the branch lines below the node appear in gray.

Note If you delete nodes (branches or leaves), you cannot undo the
changes. The Phylogenetic Tree Tool does not have an Undo command.

3 Click the branch or leaf node.

The tool removes the branch from the figure and rearranges the other
nodes to balance the tree structure. It does not recalculate the phylogeny.

Tip After pruning nodes, you can redraw the tree by selecting Tools > Fit
to Window.

Zoom In, Zoom Out, and Pan Commands
The Zoom and Pan commands are the standard controls for resizing and
moving the screen in any MATLAB Figure window.

1 Select Tools > Zoom In, or from the toolbar, click the Zoom In icon .

4-36

Phylogenetic Tree Tool Reference

The tool activates zoom in mode and changes the cursor to a magnifying
glass.

2 Place the cursor over the section of the tree diagram you want to enlarge
and then click.

The tree diagram doubles its size.

3 From the toolbar click the Pan icon .

4 Move the cursor over the tree diagram, left-click, and drag the diagram to
the location you want to view.

Tip After zooming and panning, you can reset the tree to its original view,
by selecting Tools > Reset View.

Select Submenu
Select a single branch or leaf node by clicking it. Select multiple branch or
leaf nodes by Shift-clicking the nodes, or click-dragging to draw a box around
nodes.

4-37

4 Phylogenetic Analysis

Use the Select submenu to select specific branch and leaf nodes based on
different criteria.

• Select By Distance — Displays a slider bar at the top of the window,
which you slide to specify a distance threshold. Nodes whose distance from
the selected node are below this threshold appear in red. Nodes whose
distance from the selected node are above this threshold appear in blue.

• Select Common Ancestor— For all selected nodes, highlights the closest
common ancestor branch node in red.

• Select Leaves — If one or more nodes are selected, highlights the nodes
that are leaf nodes in red. If no nodes are selected, highlights all leaf
nodes in red

• Propogate Selection— For all selected nodes, highlights the descendant
nodes in red.

• Swap Selection — Clears all selected nodes and selects all deselected
nodes.

After selecting nodes using one of the previous commands, hide and show the
nodes using the following commands:

• Collapse Selected

• Expand Selected

• Expand All

Clear all selected nodes by clicking anywhere else in the Phylogenetic Tree
Tool window.

Find Leaf or Branch Command
Phylogenetic trees can have thousands of leaves and branches, and finding a
specific node can be difficult. Use the Find Leaf/Branch command to locate
a node using its name or part of its name.

1 Select Tools > Find Leaf/Branch.

The Find Leaf/Branch dialog box opens.

4-38

Phylogenetic Tree Tool Reference

2 In the Regular Expression to match box, enter a name or partial name
of a branch or leaf node.

3 Click OK.

The branch or leaf nodes that match the expression appear in red.

After selecting nodes using the Find Leaf/Branch command, you can hide
and show the nodes using the following commands:

• Collapse Selected

• Expand Selected

• Expand All

Collapse Selected, Expand Selected, and Expand All
Commands
When you select nodes, either manually or using the previous commands, you
can then collapse them by selecting Tools > Collapse Selected.

The data for branches and leaves that you hide using the Collapse/Expand
or Collapse Selected command are not removed from the tree. You can
display selected or all hidden data using the Expand Selected or Expand
All command.

Fit to Window Command
After you hide nodes with the collapse commands, or delete nodes with the
Prune command, there can be extra space in the tree diagram. Use the Fit

4-39

4 Phylogenetic Analysis

to Window command to redraw the tree diagram to fill the entire Figure
window.

Select Tools > Fit to Window.

Reset View Command
Use the Reset View command to remove formatting changes such as
collapsed branches and zooms.

Select Tools > Reset View.

Options Submenu
Use the Options command to select the behavior for the zoom and pan modes.

• Unconstrained Zoom — Allow zooming in both horizontal and vertical
directions.

• Horizontal Zoom— Restrict zooming to the horizontal direction.

• Vertical Zoom (default) — Restrict zooming to the vertical direction.

• Unconstrained Pan — Allow panning in both horizontal and vertical
directions.

• Horizontal Pan— Restrict panning to the horizontal direction.

• Vertical Pan (default) — Restrict panning to the vertical direction.

Window Menu
This section illustrates how to switch to any open window.

TheWindow menu is standard on MATLAB interfaces and Figure windows.
Use this menu to select any opened window.

Help Menu
This section illustrates how to select quick links to the Bioinformatics
Toolbox documentation for phylogenetic analysis functions, tutorials, and
the phytreetool reference

4-40

Phylogenetic Tree Tool Reference

Use the Help menu to select quick links to the Bioinformatics Toolbox
documentation for phylogenetic analysis functions, tutorials, and the
phytreetool reference.

4-41

4 Phylogenetic Analysis

4-42

A

Examples

Use this list to find examples in the documentation.

A Examples

Introduction
“Importing and Exploring Bioinformatic Data from Microsoft® Excel” on
page 1-21
“Creating get Functions” on page 1-29
“Extracting Information from Large Multi-Entry Text Files” on page 1-34

Sequence Analysis
“Example: Sequence Statistics” on page 2-2
“Example: Sequence Alignment” on page 2-22
“Storing and Managing Short-Read Sequence Data in Objects” on page 2-63

Microarray Analysis
“Storing and Managing Gene Expression Data in Objects” on page 3-2
“Representing Expression Data Values in DataMatrix Objects” on page 3-5
“Representing Expression Data Values in ExptData Objects” on page 3-11
“Representing Sample and Feature Metadata in MetaData Objects” on
page 3-15
“Representing Experiment Information in a MIAME Object” on page 3-22
“Example: Visualizing Microarray Data” on page 3-33
“Example: Analyzing Gene Expression Profiles” on page 3-57

Phylogenetic Analysis
“Example: Building a Phylogenetic Tree” on page 4-3

A-2

Index

IndexA
amino acids

comparing sequences 2-33
composition 2-18

applications
deploying 1-19
prototyping 1-19

B
bioinformatics

application deployment 1-20
computation with MATLAB 1-2
data visualization 1-19
visualizing data 1-2

Bioinformatics Toolbox
additional software 1-6
expected user 1-3
installation 1-5
required software 1-5

C
clusters

gene expression data 3-64
codons

nucleotide composition 2-11
composition

amino acid 2-18
nucleotide 2-11

conversions
nucleotide to amino acid 2-18

D
data

filtering microarray data 3-61
getting into MATLAB 2-5
loading into MATLAB 3-57
microarray 3-34

data formats
supporting functions 1-8

data visualization
bioinformatics 1-19

databases
getting information from 2-24
related genes 2-27
supporting functions 1-8

DataMatrix object
accessing 3-8
constructing 3-6
getting properties 3-7
indexing 3-8
properties 3-7
setting properties 3-7
working with 3-5

E
examples

gene expression in mouse brain 3-33
gene expression in yeast metabolism 3-57
sequence alignment 2-22
sequence statistics 2-2

Excel spreadsheets
using with bioinformatics data 1-21

F
FASTA files

accessing 1-34
FASTQ files

accessing 1-34
features

prototyping 1-19
functions

data formats 1-8
databases 1-8
graph theory 1-17
mass spectrometry analysis 1-14

Index-1

Index

microarray analysis 1-12
microarray data storage 1-13 3-5
protein structure analysis 1-11
sequence alignment 1-10
sequence utilities 1-10
statistical learning 1-18

G
gene expression profile

mouse brain 3-33
yeast metabolism 3-57

genome data
with MATLAB structures 3-57

graph theory
supporting functions 1-17

graph visualization
supporting methods 1-18

I
installation

from DVD or Web 1-5

M
mass spectrometry analysis

supporting functions 1-14
MATLAB structures

with genome data 2-5
methods

graph visualization 1-18
microarray

clustering genes 3-64
filtering data 3-61
mouse brain example 3-1
principal component analysis 3-68
scatter plots 3-48
spacial images 3-36
statistics 3-46
visualizing data 3-33

working with data 3-34
yeast example 3-1

microarray analysis
supporting functions 1-12

microarray data storage
supporting functions 1-13 3-5

model organism
finding 2-22

mouse brain
gene expression profile 3-33
microarray tutorial 3-33

multiple sequence alignment
aligning sequences 2-58
manual adjustment 2-59

Multiple Sequence Alignment Viewer
GUI 2-56

N
NCBI

searching Web site 2-22
Next generation sequencing 2-63
nucleotides

composition in sequences 2-6
content in sequences 2-2
searching database 2-27

O
objects

DataMatrix 3-5
open reading frames

searching for 2-15

P
phylogenetic analysis

building tree 4-3
creating subtree 4-9
creating tree 4-6
exploring tree 4-11

Index-2

Index

GUI reference 4-16
reading data 2-56
searching NCBI 4-5
selecting subtree 2-57

plots
scatter 3-48

principal component analysis
filtering microarray data 3-68

protein properties
analysis functions 1-11

protein sequence
locating 2-29

prototyping
supporting features 1-19

S
SAM files

accessing 1-34
sequence

amino acid conversion 2-18
codon composition 2-11
comparing amino acids 2-33
nucleotide content 2-2
protein coding 2-29
searching database 2-27
statistics example 2-2

sequence alignment
example 2-22
supporting functions 1-10

sequence analysis
defined 2-1
using seqtool GUI 2-42

Sequence data
short-read 2-63

sequence tool GUI
importing sequence 2-42
reading frames 2-48
searching words 2-46
statistics 2-51
viewing sequence 2-44

sequence utilities
supporting functions 1-10

sequences
nucleotide composition 2-6

share algorithms
bioinformatics 1-20

Short-read sequence data 2-63
software

required 1-5
spatial images

microarray 3-36
Spreadsheet Link EX software

using with bioinformatics data 1-21
statistical learning

supporting functions 1-18
statistics

microarray 3-46
structures

with genome data 3-57

V
visualizing data

microarray 3-33

Index-3

	toc
	Getting Started
	Product Overview
	Features
	Expected Users

	Installation
	Installing
	Required Software
	Optional Software

	Features and Functions
	Data Formats and Databases
	Sequence Alignments
	Sequence Utilities and Statistics
	Protein Property Analysis
	Phylogenetic Analysis
	Microarray Data Analysis
	Microarray Data Storage
	Mass Spectrometry Data Analysis
	Graph Theory Functions
	Graph Visualization
	Statistical Learning and Visualization
	Prototyping and Development Environment
	Data Visualization
	Algorithm Sharing and Application Deployment

	Importing and Exploring Bioinformatic Data from Microsoft Excel
	Creating get Functions
	What Are get Functions?
	Creating the getpubmed Function

	Extracting Information from Large Multi-Entry Text Files
	Overview
	What Files Can You Access?
	Before You Begin
	Creating a BioIndexedFile Object to Access Your Source File
	Determining the Number of Entries Indexed By a BioIndexedFile Ob
	Retrieving Entries from Your Source File
	Retrieving Entries Using Indices
	Retrieving Entries Using Keys

	Reading Entries from Your Source File
	Setting the Interpreter Property
	Reading a Subset of Entries
	Example

	Sequence Analysis
	Example: Sequence Statistics
	Overview of Example
	Determining Nucleotide Content
	Reading Sequence Information
	Determining Nucleotide Composition
	Determining Codon Composition
	Open Reading Frames
	Amino Acid Conversion and Composition

	Example: Sequence Alignment
	Overview of Example
	Finding a Model Organism to Study
	Retrieving Sequence Information from a Public Database
	Searching a Public Database for Related Genes
	Locating Protein Coding Sequences
	Comparing Amino Acid Sequences

	Sequence Tool
	Overview of the Sequence Tool
	Importing a Sequence
	Viewing Nucleotide Sequence Information
	Searching for Words
	Exploring Open Reading Frames
	Viewing Amino Acid Sequence Statistics
	Closing the Sequence Tool
	References

	Multiple Sequence Alignment Viewer
	Overview of the Multiple Sequence Alignment Viewer
	Loading Sequence Data and Viewing the Phylogenetic Tree
	Selecting a Subset of Data from the Phylogenetic Tree
	Aligning Multiple Sequences
	Adjusting Multiple Sequence Alignments Manually
	Closing the Multiple Sequence Alignment Viewer

	Storing and Managing Short-Read Sequence Data in Objects
	Overview
	Representing Sequence and Quality Data in a BioRead Object
	Constructing a BioRead Object from a FASTQ-Formatted File
	Constructing a BioRead Object from a Very Large FASTQ-Formatted

	Representing Sequence, Quality, and Alignment/Mapping Data in a
	Constructing a BioMap Object from a SAM Structure
	Constructing a BioMap Object from a SAM-Formatted File
	Constructing a BioMap Object from a Very Large SAM-Formatted Fil

	Retrieving Information from a BioRead or BioMap Object
	Retrieving All Values of a Property from a BioRead or BioMap Obj
	Retrieving a Subset of Information from a BioRead or BioMap Obje

	Setting Information in a BioRead or BioMap Object
	Providing Custom Headers for Sequences
	Renaming the Reference Sequence

	Determining Coverage of a Reference Sequence
	Constructing Sequence Alignments to a Reference Sequence
	Filtering Read Sequences Using SAM Flags
	Removing Unmapped Read Sequences
	Removing Read Sequences That Are Not Mapped in a Pair

	Microarray Analysis
	Storing and Managing Gene Expression Data in Objects
	Representing Expression Data Values in DataMatrix Objects
	Overview of DataMatrix Objects
	Constructing DataMatrix Objects
	Getting and Setting Properties of a DataMatrix Object
	Accessing Data in DataMatrix Objects
	Parentheses () Indexing
	Dot . Indexing

	Representing Expression Data Values in ExptData Objects
	Overview of ExptData Objects
	Constructing ExptData Objects
	Using Properties of an ExptData Object
	Using Methods of an ExptData Object
	References

	Representing Sample and Feature Metadata in MetaData Objects
	Overview of MetaData Objects
	Constructing MetaData Objects
	Constructing a MetaData Object from Two dataset Arrays
	Constructing a MetaData Object from a Text File

	Using Properties of a MetaData Object
	Using Methods of a MetaData Object

	Representing Experiment Information in a MIAME Object
	Overview of MIAME Objects
	Constructing MIAME Objects
	Constructing a MIAME Object from a GEO Structure
	Constructing a MIAME Object from Properties

	Using Properties of a MIAME Object
	Using Methods of a MIAME Object

	Representing All Data and Information in an ExpressionSet Object
	Overview of ExpressionSet Objects
	Constructing ExpressionSet Objects
	Using Properties of an ExpressionSet Object
	Using Methods of an ExpressionSet Object

	Example: Visualizing Microarray Data
	Overview of the Mouse Example
	Exploring the Microarray Data Set
	Spatial Images of Microarray Data
	Statistics of the Microarrays
	Scatter Plots of Microarray Data

	Example: Analyzing Gene Expression Profiles
	Overview of the Yeast Example
	Exploring the Data Set
	Filtering Genes
	Clustering Genes
	Principal Component Analysis

	Phylogenetic Analysis
	Overview of Phylogenetic Analysis
	Example: Building a Phylogenetic Tree
	Overview of the Primate Example
	Why Use Mitochondrial DNA Sequences for Phylogenetic Study?
	Neanderthal DNA
	References

	Searching NCBI for Phylogenetic Data
	Creating a Phylogenetic Tree for Five Species
	Creating a Phylogenetic Tree for Twelve Species
	Exploring the Phylogenetic Tree

	Phylogenetic Tree Tool Reference
	Overview of the Phylogenetic Tree Tool
	Opening the Phylogenetic Tree Tool
	File Menu
	New Tool Command
	Open Command
	Import from Workspace Command
	Open Original in New Tool
	Save As Command
	Export to New Tool Command
	Export to Workspace Command
	Print to Figure Command
	Page Setup Command
	Print Setup Command
	Print Preview Command
	Print Command

	Tools Menu
	Inspect Mode
	Collapse and Expand Branch Mode
	Rotate Branch Mode
	Rename Leaf or Branch Mode
	Prune (Delete) Leaf or Branch Mode
	Zoom In, Zoom Out, and Pan Commands
	Select Submenu
	Find Leaf or Branch Command
	Collapse Selected, Expand Selected, and Expand All Commands
	Fit to Window Command
	Reset View Command
	Options Submenu

	Window Menu
	Help Menu

	Examples
	Introduction
	Sequence Analysis
	Microarray Analysis
	Phylogenetic Analysis

	Index

